4.5 Integration by Substitution

Antidifferentiation of a composite function - Let g be a function whose range is an interval I, and let f be a function that is continuous on I. If g is differentiable on its domain and F is an antiderivative of f on I, then $\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C$. Letting $u=g(x)$ gives $d u=g^{\prime}(x) d x$ and

$$
\int f(u) d u=F(u)+C
$$

To use this theorem we need to remember composition of functions, the chain rule, and the concept of 'inside' function and 'outside' function.

Examples: Identify the inside, the outside, and the derivative of the inside in order to integrate.

$$
\begin{aligned}
& \text { 1. } \int 2 x\left(x^{2}+1\right)^{4} d x=\int\left(x^{2}+1\right)^{4} 2 x d x=\int u^{4} d u=\frac{u^{5}}{5}+C=\frac{\left(x^{2}+1\right)^{5}}{5}+C \\
& 1 n=x^{2}+1 \\
& \begin{array}{ll}
d e r i n=2 x d x & u=x^{2}+1 \\
d u & =2 x d x
\end{array} \\
& \text { out }=()^{4} \\
& \text { 2. } \int 3 x^{2} \sqrt{x^{3}+1} d x=\int\left(x^{3}+1\right)^{1 / 2} 3 x^{2} d x=\int u^{1 / 2} d u=\frac{u^{3 / 2}}{\frac{3}{2}}+C=\frac{2}{3} u^{3 / 2}+C \\
& 1 n=x^{3}+1 \\
& \text { der in }=3 x^{2} d x \\
& u=x^{3}+1 \\
& d u=3 x^{2} d x \\
& =\frac{2}{3} \sqrt{\left(x^{3}+1\right)^{3}}+C \\
& \text { out }=\sqrt{ }=()^{1 / 2} \\
& \text { 3. } \int \sec ^{2} x(\tan x+3) d x=\int(\tan x+3) \sec ^{2} x d x=\int u d u=\frac{u^{2}}{2}+C=\frac{(\tan x+3)^{2}}{2}+C \\
& \text { in }=\tan x+3 \\
& \text { der in }=\sec ^{2} x d x \\
& u=\tan x+3 \\
& d u=\sec ^{2} x d x \\
& \text { out }=()^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } \int x\left(x^{2}-5\right)^{7} d x=\int\left(x^{2}-5\right)^{7} x d x=\frac{1}{2} \int u^{7} d u=\frac{1}{2} \frac{u^{8}}{8}+C=\frac{1}{16} u^{8}+C \\
& 1 n=x^{2}-5 \\
& u=x^{2}-5 \\
& =\frac{1}{16}\left(x^{2}-5\right)^{8}+C \\
& \operatorname{der} \text { in }=2 x \partial x \\
& d u=2 x d x \\
& \text { out }=()^{7} \quad \frac{1}{2} d u=x d x \\
& \text { 5. } \int x^{2}\left(2 x^{3}-1\right)^{3 / 2} d x=\int\left(2 x^{3}-1\right)^{3 / 2} x^{2} d x=\frac{1}{6} \int u^{3 / 2} d u=\frac{1}{6} \frac{u^{5 / 2}}{5 / 2}+C \\
& \ln =2 x^{3}-1 \quad u=2 x^{3}-1 \\
& \text { der } 1 n=6 x^{2} d x \quad d u=6 x^{2} d x \\
& \text { out }=()^{3 / 2} \quad \frac{1}{6} d u=x^{2} d x \\
& =\frac{1}{6} \cdot \frac{2}{5} u^{5 / 2}+C \\
& =\frac{1}{15}\left(2 x^{3}-1\right)^{5 / 2}+C \\
& \text { 6. } \int \frac{x^{2}}{\left(16-x^{3}\right)^{2}} d x=\int\left(16-x^{3}\right)^{-2} x^{2} d x=-\frac{1}{3} \int u^{-2} d u=-\frac{1}{3} \frac{u^{-1}}{-1}+C \\
& 1 n=16-x^{3} \\
& \text { der in }=-3 x^{2} d x \\
& u=16-x^{3} \\
& d u=-3 x^{2} d x \\
& =\frac{1}{3} \cdot \frac{1}{4}+C=\frac{1}{3\left(16-x^{3}\right)}+C \\
& \text { out }=\frac{1}{()^{2}}=()^{-2} \quad-\frac{1}{3} d u=x^{2} d x \\
& \text { 7. } \int \cos 8 x d x=\int \cos (8 x) d x=\frac{1}{8} \int \cos u d u=\frac{1}{8} \sin u+C=\frac{1}{8} \sin (8 x)+C \\
& 1 n=8 x \\
& \operatorname{der} \text { in }=8 d x \\
& u=8 x \\
& \text { der in } 8 d x \quad d_{u}=8 d x \\
& a t=\cos () \quad \frac{1}{8} d u=d x \\
& \text { 8. } \int \frac{\sin x}{\cos ^{3} x} d x=\int(\cos x)^{-3} \sin x d x=-\int u^{-3} d u=-\frac{u^{-2}}{-2}+C \\
& \text { inside is tricky, in general } \\
& \text { we wont "create" derivatives } \\
& \text { for the denominator so let } \\
& \text { in }=\cos x \text { der in }=-\sin x d x \\
& \begin{array}{l}
u=\cos x \\
d u=-\sin x d x
\end{array} \\
& =\frac{1}{2 u^{2}}+C \\
& -d u=\sin x d x \\
& \text { out }=\frac{1}{()^{3}}=()^{-3}
\end{aligned}
$$

9. $\int x \sqrt{x+6} d x$
$i n=x+6\}$ our regular substitution method will not handle the der $i^{n}=1 d x\left\{\begin{array}{l}x \text { outside the radical. When this happens we do a }\end{array}\right.$ outside $=\sqrt{ }$ double substitution that acts as a change of variable.

Let $u=x+6 \quad \int x \sqrt{x+6} d x=\int(u-6) u^{1 / 2} d u$
Then $u-b=x$

$$
d u=d x
$$

* we couldn't distribute with a sum under the radical, but the radical does distribute over the difference.

10. $\int(x+1) \sqrt{2-x} d x$ similar to \#9

$$
\begin{aligned}
& u=2-x \quad d u=-d x \\
& x=2-u
\end{aligned}
$$

$$
\begin{aligned}
\int(x+1)(2-x)^{1 / 2} d x & =-\int(2-u+1) u^{1 / 2} d u \\
& =-\int\left(3 u^{1 / 2}-u^{3 / 2}\right) d u \\
& =-\left(3 \cdot \frac{2}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right)+C \\
& =\frac{2}{5}(2-x)^{5 / 2}-2(2-x)^{3 / 2}+C
\end{aligned}
$$

Examples: Evaluate the definite integral using substitution.

1. $\int_{-2}^{4} x^{2}\left(x^{3}+8\right)^{2} d x$ when using substitution with definite integrals, be sure to also change limits of integration

$$
\begin{array}{rlrl}
u & =x^{3}+8 & \text { when } x=-2 \\
d u & =3 x^{2} d x & \begin{array}{l}
u=(-2)^{3}+8=0
\end{array} \\
\frac{1}{3} d u & =x^{2} d x & \text { when } x=4 \\
u=(4)^{3} 18=72
\end{array} \quad \begin{aligned}
\frac{1}{3} \int_{0}^{72} u^{2} d u & =\left.\frac{1}{3} \frac{u^{3}}{3}\right|_{0} ^{72} \\
& =\frac{1}{9}(72)^{3}-\frac{1}{9}(0)^{3} \\
& =\frac{1}{9}(72)^{3}=41472
\end{aligned}
$$

notice you do not change back to x from u when limits are also changed
2. $\int_{0}^{1} x \sqrt{1-x^{2}} d x$

$$
\begin{aligned}
u & =1-x^{2} \\
d u & =-2 x d x \\
-\frac{1}{2} d u & =x d x
\end{aligned}
$$

when $x=0$

$$
u=1
$$

when $x=1$

$u=0$

$$
=\left(-\frac{1}{3} \sqrt{(0)^{3}}\right)-\left(-\frac{1}{3} \sqrt{(1)^{3}}\right)
$$

$$
=0+\frac{1}{3}=\frac{1}{3}
$$

$$
\text { 3. } \begin{aligned}
\int_{0}^{2} & \frac{x}{\sqrt{1+2 x^{2}}} d x \\
u & =1+2 x^{2} \\
d u & =4 x d x \\
\frac{1}{4} d u & =x d x
\end{aligned}
$$

$$
x=0, u=1
$$

