Chapter Five: Logarithmic, Exponential, and Other Transcendental Functions

5.1 The Natural Logarithmic Function: Differentiation

Recall from Pre-Calculus: The domain of any logarithmic function is the set of positive integers. Therefore to find the domain of a logarithmic function, set the argument (the stuff inside the log) greater than zero and solve.

Examples: Find the domain.

1. $f(x)=\log _{5}(3 x-7)$

$$
\begin{aligned}
& 3 x-7>0 \\
& 3 x>7 \\
& x>\frac{7}{3} \\
&\left(\frac{7}{3}, \infty\right)
\end{aligned}
$$

Definition of the Natural Log Function - The natural logarithmic function is defined by $\ln x=\int_{1}^{x} \frac{1}{t} d t, x>0$. The domain of the natural log function is the set of all positive real numbers.

Properties of the Natural Logarithmic Function:

1. The domain is $(0, \infty)$ and the range is $(-\infty, \infty)$.
2. The function is continuous, increasing, and one-to-one.
3. The graph is concave downward.

Logarithmic Properties - If a and b are positive numbers and n is rational, then the following properties are true:

1. $\ln (1)=0$
2. $\ln (a b)=\ln a+\ln b$
3. $\ln \left(a^{n}\right)=n \ln a$
4. $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$

Examples: Use the properties of logarithms to approximate the indicated logarithms, given than $\ln 2 \approx 0.6931$ and $\ln 3 \approx 1.0986$.

1. $\ln 6=\ln (2 \cdot 3)=\ln 2+\ln 3 \approx 0.6931+1.6986=1.7917$
2. $\ln \frac{2}{3}=\ln 2-\ln 3 \approx 0.6931-1.0986=-0.4055$
3. $\ln 81=\ln \left(3^{4}\right)=4 \ln 3 \approx 4(1.0986)=4.3944$
4. $\ln \sqrt{3}=\ln \left(3^{1 / 2}\right)=\frac{1}{2} \ln 3 \approx \frac{1}{2}(1.0986)=0.5493$

Definition of e-The letter e denotes the positive real number such that $\ln e=\int_{1}^{e} \frac{1}{t} d t=1 \quad \begin{aligned} & \text { Note that } \\ & \ln e=1\end{aligned}$
Examples: Expand the logarithmic expression.

1. $\ln \sqrt{x^{5}}=\ln \left(x^{5}\right)^{1 / 2}=\ln x^{5 / 2}=\frac{5}{2} \ln x$
2. $\ln \left(3 e^{2}\right)=\ln 3+\ln e^{2}=\ln 3+2 \ln e=\ln 3+2(1)=\ln (3)+2$ This is not $\ln 5$. The 2 is outside of the logarithm

Examples: Write as a logarithm of a single quantity.

1. $3 \ln x+2 \ln y-4 \ln z=\ln x^{3}+\ln y^{2}-\ln z^{4}$

$$
\begin{aligned}
& =\ln x^{3} y^{2}-\ln z^{4} \\
& =\ln \frac{x^{3} y^{2}}{z^{2}}
\end{aligned}
$$

2. $2[\ln x-\ln (x+1)-\ln (x-1)]=2 \ln x-2 \ln (x+1)-2 \ln (x-1)$

$$
=\ln x^{2}-\ln (x+1)^{2}-\ln (x-1)^{2}
$$

$$
=\ln \frac{x^{2}}{(x+1)^{2}}-\ln (x-1)^{2}
$$

$$
=\ln \frac{x^{2}}{(x+1)^{2}(x-1)^{2}}
$$

Note 1: $\frac{x^{2}}{(x+1)^{2}}(x-1)^{2}=\frac{x^{2}}{(x+1)^{2}(x-1)^{2}}$
Note 2': There are many different, but equal, ways of writing this solution.

Theorem - Let u be a differentiable function of x.

1. $\frac{d}{d x}[\ln x]=\frac{1}{x}, x>0$
2. $\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}}{u}, u>0$

Examples: Find the derivative of the function.

1. $f(x)=\ln (3 x-1)$

$$
\begin{array}{ll}
f(x)=\ln (3 x-1) & f^{\prime}(x)=\frac{3}{3 x-1} \\
u=3 x-1 & f^{\prime}
\end{array}
$$

$$
u^{\prime}=3
$$

2. $h(x)=\ln \left(2 x^{2}+1\right)$

$$
\begin{aligned}
& h(x)=\ln \left(2 x^{2}+1\right) \\
& u^{\prime}=2 x^{2}+1 \\
& u^{\prime}=4 x
\end{aligned} \quad h^{\prime}(x)=\frac{4 x}{2 x^{2}+1}
$$

3. $y=x^{2} \ln x$

$$
y=\underset{\substack{\text { product } \\ \text { rule }}}{x^{2} \ln x} \quad y^{\prime}=x^{2} \cdot \frac{1}{x}+(\ln x)(2 x)=x+2 x \ln x
$$

4. $y=\ln (\ln x)$

$$
\begin{aligned}
& u=\ln x \\
& u^{\prime}=\frac{1}{x}
\end{aligned}
$$

$$
y^{\prime}=\frac{\frac{1}{x}}{\ln x}=\frac{1}{x} \cdot \frac{1}{\ln x}=\frac{1}{x \ln x}
$$

5. $f(x)=\ln \left(\frac{2 x}{x+3}\right)$

$$
\begin{aligned}
& u=\frac{2 x}{x+3} \\
& u^{\prime}=\frac{(x+3)(2)-2 x(1)}{(x+3)^{2}}=\frac{2 x+6-2 x}{(x+3)^{2}}=\frac{6}{(x+3)^{2}}
\end{aligned}
$$

divide by fraction

$$
f^{\prime}(x)=\frac{\frac{6}{(x+3)^{2}}}{\frac{2 x}{x+3}}=\frac{6}{(x+3)^{2}} \cdot \frac{x+3}{2 x}
$$

$$
\begin{aligned}
& \text { 6. } f(x)=\ln \left(x+\sqrt{4+x^{2}}\right) \\
& u^{\prime}=x+\sqrt{4+x^{2}} \\
& u^{\prime}=1+\frac{1}{2}\left(4+x^{2}\right)^{-1 / 2}(2 x) \\
& u^{\prime}=1+\frac{x}{\sqrt{4+x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } y=\ln |\csc x| \\
& u=|\csc x|
\end{aligned}
$$

$$
d u=-\csc x \cot x
$$

Examples: Find an equation of the tangent line to the graph of f at the given point.

$$
\begin{aligned}
& \text { 1. } f(x)=3 x^{2}-\ln x,(1,3) \\
& f^{\prime}(x)=6 x-\frac{1}{x} \\
& m=f^{\prime}(1)=6(1)-\frac{1}{(1)}=6-1=5
\end{aligned}
$$

$$
\begin{aligned}
& y-3=5(x-1) \\
& y-3=5 x-5 \\
& y=5 x-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } f(x)=x^{3} \ln x,(1,0) \\
& f^{\prime}(x)=x^{3} \cdot \frac{1}{x}+(\ln x)\left(3 x^{2}\right)=x^{2}+3 x^{2} \ln x \\
& m=f^{\prime}(1)=(1)^{2}+3(1)^{2} \ln (1)=1+3(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& y-0=1(x-1) \\
& y=x-1
\end{aligned}
$$

Examples: Use implicit differentiation to find $d y / d x$.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
\ln x y+5 x=30 \\
\frac{1}{x y}\left(x \frac{d y}{d x}+y(1)\right)+5=0 \\
\frac{x}{x y} \frac{d y}{d x}+\frac{y}{x y}+5=0
\end{array} \quad>\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =-5-\frac{1}{x} \\
\frac{d y}{d x} & =-5 y-y / x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } 4 x y+\ln x^{2} y=7 \\
& \begin{array}{ll}
4 x \frac{d y}{d x}+y(4)+\frac{1}{x^{2} y}\left(x^{2} \frac{d y}{d x}+y 2 x\right)=0 \\
4 x \frac{d y}{d x}+4 y+\frac{1}{y} \frac{d y}{d x}+\frac{2}{x}=0 \\
4 x \frac{d y}{d x}+\frac{1}{y} \frac{d y}{d x}=-4 y-\frac{2}{x}
\end{array}
\end{aligned}
$$

Examples: Use logarithmic differentiation to find $d y / d x$.
Logarithmic differentiation is a nice "trick" to handle otherwise difficult derivatives. In this process we take the natural logarithm of both sides of a function equation, use implicit differentiation, then solve for $\frac{d y}{d x}$.

1. $y=x \sqrt{x^{2}+1}, x>0 \quad$ product rule with chain rule or...

$$
\begin{array}{rlrl}
\ln y & =\ln x \sqrt{x^{2}+1} & & \text { take natural log of both sides } \\
\ln y & =\ln x+\frac{1}{2} \ln \left(x^{2}+1\right) & & \text { use log properties } \\
\frac{1}{y} \frac{d y}{d x} & =\frac{1}{x}+\frac{1}{2} \frac{2 x}{x^{2}+1} & & \text { find derivatives } \\
y \cdot \frac{1}{y} \frac{d y}{d x} & =\left(\frac{1}{x}+\frac{x}{x^{2}+1}\right) y & \text { simplify } & \text { solve for dy/dx } \\
\frac{d y}{d x} & =\left(\frac{1}{x}+\frac{x}{x^{2}+1}\right) x \sqrt{x^{2}+1}=\sqrt{x^{2}+1}+\frac{x^{2} \sqrt{x^{2}+1}}{x^{2}+1} \quad \text { simplify back to } & \text { an explicit function of } x .
\end{array}
$$

$$
\begin{aligned}
& \text { 2. } y=\frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}}, x>\frac{2}{3} \\
& \ln y=\ln \frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}} \\
& \ln y=\ln x^{2}+\ln \sqrt{3 x-2}-\ln (x+1)^{2} \\
& \ln y=2 \ln x+\frac{1}{2} \ln (3 x-2)-2 \ln (x+1) \\
& \quad \frac{d y}{d x}=\frac{2 x \sqrt{3 x-2}}{(x+1)^{2}}+\frac{3 x^{2} \sqrt{3 x-2}}{2(3 x-2)(x+1)^{2}}-\frac{\frac{d y}{d x}}{d x}=\frac{2}{x}+\frac{1}{2} \frac{3}{3 x-2}-2 \frac{1}{x+1} \\
& \frac{1}{x}=\frac{2}{x}+\frac{3}{2(3 x-2)}-\frac{2}{x+1} \\
& 2(3 x-2)
\end{aligned} \quad \begin{aligned}
& \left.\frac{2}{x+1}\right) \frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } y=\sqrt{\frac{x^{2}-1}{x^{2}+1}}, x>1 \\
& \ln y=\ln \sqrt{\frac{x^{2}-1}{x^{2}+1}} \\
& \ln y=\frac{1}{2} \ln \left(\frac{x^{2}-1}{x^{2}+1}\right) \\
& \ln y=\frac{1}{2} \ln \left(x^{2}-1\right)-\frac{1}{2} \ln \left(x^{2}+1\right) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{2} \frac{2 x}{x^{2}-1}-\frac{1}{2} \frac{2 x}{x^{2}+1} \\
& \frac{1}{y} \frac{d y}{d x}=\frac{x}{x^{2}-1}-\frac{x}{x^{2}+1} \quad \text { so } \frac{d y}{d x}=\left(\frac{x}{x^{2}-1}-\frac{x}{x^{2}+1}\right) \sqrt{\frac{x^{2}-1}{x^{2}+1}}
\end{aligned}
$$

