5.3 Inverse Functions

Definition of an Inverse Function - A function g is the inverse function of the function f if $f(g(x))=x$ for each x in the domain of g and $g(f(x))=x$ for each x in the domain of f. The function g is denoted by $f^{-1}(\operatorname{read} f$ inverse).

Examples: Show that f and g are inverse functions. \rightarrow Show composition yields the identity
in both directions

1. $f(x)=3-4 x, \quad g(x)=\frac{3-x}{4}$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{3-x}{4}\right) \\
& =3-4\left(\frac{3-x}{4}\right) \\
& =3-(3-x) \\
& =x
\end{aligned}
$$

2. $f(x)=1-x^{3}, \quad g(x)=\sqrt[3]{1-x}$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(\sqrt[3]{1-x}) \\
& =1-(\sqrt[3]{1-x})^{3} \\
& =x-(x-x) \\
& =x
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(1-x^{3}\right) \\
& =\sqrt[3]{x-\left(x-x^{3}\right)} \\
& =\sqrt[3]{x^{3}} \\
& =x
\end{aligned}
$$

Reflective Property of Inverse Functions - The graph of f contains the point (a, b) if and only if the graph of f^{-1} contains the point (b, a).

The Existence of an Inverse Function:

1. A function has an inverse function if and only if it is one-to-one.
2. If f is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse.

Guidelines for Finding an Inverse Function -

1. Use the Existence Theorem to determine whether the function given by $y=f(x)$ has an inverse function.
2. Solve for x as a function of $y: x=g(y)=f^{-1}(y)$
3. Interchange x and y. The resulting equation is $y=f^{-1}(x)$.
4. Define the domain of f^{-1} as the range of f.
5. Verify with composition that the functions are indeed inverses.

Example: Find the inverse function.

1. $f(x)=2 x-3$

$$
\begin{aligned}
& y=2 x-3 \\
& y+3=2 x \\
& \frac{y+3}{2}=x
\end{aligned} \quad\left[\begin{array}{l}
y=\frac{x+3}{2} \\
\frac{15}{2} f^{-1}(x)=\frac{x+3}{2}
\end{array}\right.
$$

use composition to verify these are inverses.
2. $f(x)=\sqrt{4-x^{2}}, \quad 0 \leq x \leq 2$

$$
\begin{aligned}
& y=\sqrt{4-x^{2}} \\
& y^{2}=4-x^{2} \\
& y^{2}-4=-x^{2} \\
& 4-y^{2}=x^{2}
\end{aligned}
$$

\rightarrow Based on original domain $[0,2]$ of f_{1} the range of f^{-1} will be $[0,1]$. Th's allows us to choose positive or negative root.

$$
\begin{aligned}
& y=\sqrt{4-x^{2}} \\
& f^{-1}(x)=\sqrt{4-x^{2}}
\end{aligned}
$$

Check using compostion

But how do we know for sure that all of these functions are one-to-one? We could graph them. Or we could use calculus. If a function has a first derivative that is always positive, or always negative, then we know it is monotonic.

Example: Show that $f(x)=\frac{4}{x^{2}},(0, \infty)$ is strictly monotonic on the interval and therefore has an inverse function on that interval.

$$
\begin{aligned}
& \text { Rewrite: } f(x)=4 x^{-2} \text { numerator is always negative } \\
& f^{\prime}(x)=-8 x^{-3}=\frac{-8}{x^{3}} \text { on }(0, \infty) \text { denominator is always positive }
\end{aligned}
$$

Analysis: A negative divided by a positive will always be negative so this function is decreasing on $(0, \infty)$.

The Derivative of an Inverse Function - Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq 0$. Moreover,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0
$$

$$
\begin{aligned}
& \text { 3. } f(x)=\frac{x+2}{x} \\
& \text { check }\left(f \circ f^{-1} y x\right)=f\left(f^{-1}(x)\right) \\
& =f\left(\frac{2}{x-1}\right) \\
& \begin{array}{l}
y=\frac{x+2}{x} \\
x y=x+2
\end{array} \quad \Longrightarrow \begin{array}{l}
x=\frac{2}{y-1} \\
y=\frac{2}{x-1}
\end{array} \\
& x y-x=2 \quad f^{-1}(x)=\frac{2}{x-1} \\
& x(y-1)=2 \\
& =\frac{\frac{2}{x-1}+2}{\frac{2}{x-1}} \cdot \frac{x-1}{x-1} \\
& =\frac{\frac{2}{x-1}+\frac{2 x-2}{x-1}}{\frac{2}{x-1}}=\frac{2 x}{x-1} \cdot \frac{x-1}{2}=x \\
& \text { Verify the other... }
\end{aligned}
$$

Examples: Verify that f has an inverse. Then use the function f and the given real number a to find $\left(f^{-1}\right)^{\prime}(a)$.

1. $f(x)=5-2 x^{3}, \quad a=7$

$$
f^{\prime}(x)=-6 x^{2}
$$

analysis: x^{2} is always positive
So $-6 x^{L}$ is always negative an inverse exists

We want 7 to be input of inverse, so it is output of f. Solving $7=5-2 x^{3}$ we get $x=1$
If $f(1)=7$, then $f^{-1}(7)=1$

$$
\left(f^{-1}\right)^{\prime}(7)=\frac{1}{f^{\prime}(1)}=\frac{1}{-6(1)^{2}}=\frac{1}{-6}
$$

2. $f(x)=\sin x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \quad a=\frac{1}{2}$

$$
\sin x=\frac{1}{2}
$$

always positive

$$
x=\pi / 6
$$

$$
f\left(\frac{\pi}{6}\right)=\frac{1}{2}, \quad f^{-1}\left(\frac{1}{2}\right)=T / 6
$$

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}\left(\frac{1}{2}\right) & =\frac{1}{f^{\prime}(\pi / 6)} \\
& =\frac{1}{\cos \pi / 6} \\
& =\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } f(x)=\cos 2 x, \quad 0 \leq x \leq \frac{\pi}{2}, \quad a=1 \\
& f^{\prime}(x)=-2 \sin 2 x \\
& \text { always negative } \\
& \cos 2 x=1 \\
& 2 x-0 \\
& x=0 \\
& \text { on the interval } \\
& f(0)=1, f^{-1}(1)=0 \\
& \left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(0)}=\frac{1}{-2 \sin (0)} \\
& =\frac{1}{0} \\
& \text { = undefined }
\end{aligned}
$$

