5.3 Inverse Functions

Definition of an Inverse Function — A function g is the inverse function of the function f if f(g(x)) =X
for each x in the domain of g and g(f(x)) = x for each x in the domain of f. The function g is denoted

by f~'(read finverse).
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Reflective Property of Inverse Functions — The graph of f contains the point (a, b) if and only if the graph
of ' contains the point (b, a).



The Existence of an Inverse Function:
1. A function has an inverse function if and only if it is one-to-one.

2. If fis strictly monotonic on its entire domain, then it is one-to-one and therefore has an
inverse.

Guidelines for Finding an Inverse Function —

1. Use the Existence Theorem to determine whether the function given by y = f(x) has an
inverse function.

2. Solve for x as a function of y: x = g(y) = f71 (J’)
3. Interchange x and y. The resulting equation is y = f_1 (X)

4. Define the domain of f_las the range of f.

5. Verify with composition that the functions are indeed inverses.

Example: Find the inverse function.

1. f(x):2x—3
= X3 Ao -\-0
y=2x-> 3T Use comfos
L3¥3‘- L% 15 f(ﬂ-_’fﬁ \ne.-‘.Sﬂ3 ‘hese are \AVErSes,
2
9% =%
7

b: !L,—X1 Q)asu& on DN@:M\ dovnain Yﬁlq ”q' Q\
1 ‘\'\/\L rﬁ-¢3" og— 5;-\ v U e [b_l:l.—rl'\\s

aAlaws vs Yo chosse PD"-\':\M o ncﬂal-:w.’ cosk.

1 XL
\j - q" 31 !l{"‘)(?'
1,_)(1 -
L,’Lg _‘:(x\‘: "l‘Xl
4_ Ll 1 :X



_x+2 Check Guﬁ-‘lﬂ= Q(Q-im\

3. f(x)= r 7 _¥<7_
)(:—__\' ) =
- 1
\3 EX_ ; 2 = L 32 xi
D — X—l T;?l
Xy= *¥L D7 x-l Z
- -\ _ ,7_', xX-1
7“3"7( =1 Q (X)) = % =z, ax-t
— -
x(y-) =L _x_-"_/_’ii_%
—~ _
x-1

Ver S the  o¥er

But how do we know for sure that all of these functions are one-to-one? We could graph them. Or we
could use calculus. If a function has a first derivative that is always positive, or always negative, then we
know it is monotonic. -
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Example: Show that f(x) = (O,oo) is strictly monotonic on the interval and therefore has an
X

inverse function on that interval.
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The Derivative of an Inverse Function — Let f be a function that is differentiable on an interval /. If f has

an inverse function g, then g is differentiable at any x for which f'(g(x)) # (0. Moreover,



Examples: Verify that f has an inverse. Then use the function f and the given real number a to find

(/) (a).
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