5.3 Inverse Functions

Definition of an Inverse Function – A function g is the inverse function of the function f if f(g(x)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f. The function g is denoted by f^{-1} (read f inverse).

Examples: Show that f and g are inverse functions. -> Show composition yields the identity

1.
$$f(x) = 3 - 4x$$
, $g(x) = \frac{3 - x}{4}$
 $(f \circ g)(x) = f(g(x))$
 $= f(\frac{3 - x}{4})$
 $= 3 - \frac{y}{3}(\frac{3 - x}{y})$
 $= 3 - (3 - x)$
 $= x$

2.
$$f(x) = 1 - x^{3}$$
, $g(x) = \sqrt[3]{1 - x}$
 $(f \cdot g)(x) = f(g(x))$
 $= f(\sqrt[3]{1 - x})$
 $= 1 - (\sqrt[3]{1 - x})^{3}$
 $= \sqrt[3]{x - (x - x)}$
 $= \sqrt[3]{x}$
 $= \sqrt[3]{x}$

Reflective Property of Inverse Functions – The graph of f contains the point (a, b) if and only if the graph of f^{-1} contains the point (b, a).

The Existence of an Inverse Function:

1. A function has an inverse function if and only if it is one-to-one.

2. If *f* is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse.

Guidelines for Finding an Inverse Function –

1. Use the Existence Theorem to determine whether the function given by y = f(x) has an inverse function.

2. Solve for x as a function of y: $x = g(y) = f^{-1}(y)$

- 3. Interchange x and y. The resulting equation is $y = f^{-1}(x)$.
- 4. Define the domain of f^{-1} as the range of f.
- 5. Verify with composition that the functions are indeed inverses.

Example: Find the inverse function.

1.
$$f(x) = 2x - 3$$

 $y = 2x - 3$
 $y + 3 = 2x$
 $\frac{y + 3}{2} = x$
 $y = \frac{x + 3}{2}$
 y

2.
$$f(x) = \sqrt{4-x^2}$$
, $0 \le x \le 2$
 $y = \sqrt{4-x^2}$
 $y^2 = 4-x^2$
 $y^2 = 4-x^2$
 $y^2 - 4 = -x^2$
 $4-y^2 = x^2$
 $+\sqrt{4-y^2} = x^2$
 $+\sqrt{4-y^2} = x^2$
 $+\sqrt{4-y^2} = x$
 $+\sqrt{4-x^2}$
 $+\sqrt$

3.
$$f(x) = \frac{x+2}{x}$$

 $y = \frac{x+2}{x}$
 $xy = x+2$
 $xy - x = 2$
 $x(y-1) = 2$
 $f^{-1}(x) = \frac{2}{x-1}$
 $y = \frac{2}{x-1}$
 $f^{-1}(x) = \frac{2}{x-1}$

But how do we know for sure that all of these functions are one-to-one? We could graph them. Or we could use calculus. If a function has a first derivative that is always positive, or always negative, then we know it is monotonic.

Example: Show that $f(x) = \frac{4}{x^2}$, $(0, \infty)$ is strictly monotonic on the interval and therefore has an inverse function on that interval.

Rewrite:
$$f(x) = 4x^{-2}$$

 $f(x) = -8x^{-3} = -\frac{8}{x^3}$ for (0,00) denominator is always positive
Analysis: A negative divided by a positive will always be negative
so this function is decreasing on (0,00).

The Derivative of an Inverse Function – Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f'(g(x)) \neq 0$. Moreover,

$$g'(x) = \frac{1}{f'(g(x))}, f'(g(x)) \neq 0$$

Examples: Verify that f has an inverse. Then use the function f and the given real number a to find $(f^{-1})'(a)$.

1. $f(x) = 5 - 2x^3$, a = 7 $f'(x) = -bx^2$ Qualysis: x^2 is always positive $50 - bx^2$ is always negative an inverse existsWe want 7 to be input of inverse, so it is $output of f. Solving 7 = 5 - 2x^3$ we get x = 1If f(1) = 7, then f'(7) = 1 $(f')'(7) = \frac{1}{f'(1)} = \frac{1}{-b(1)^2} = \frac{1}{-b}$

2.
$$f(x) = \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, $a = \frac{1}{2}$
 $f'(x) = \cos x$
 $\sin x = \frac{1}{2}$
 $f'(x) = \cos x$
 $\sin x = \frac{1}{2}$
 $f'(y_{0})$
 $f'(y)$
 f

3.
$$f(x) = \cos 2x, \quad 0 \le x \le \frac{\pi}{2}, \quad a = 1$$

 $f'(x) = -2\sin 2x$
Cos2x = 1
 $f'(0) = -2\sin(0)$
 $f'(0) = \frac{1}{f'(0)} = \frac{1}{-2\sin(0)}$
 $f'(0) = \frac{1}{-2\sin(0)}$