5.4 Exponential Functions: Differentiation and Integration

Definition of the Natural Exponential Function - The inverse function of the natural logarithmic function $f(x)=\ln x$ is called the natural exponential function and is denoted by $f^{-1}(x)=e^{x}$. That is, $y=e^{x}$ if and only if $x=\ln y$.
Note: This is an L, not an I. The word logarithm starts with an L so it should be obvious... sometimes I find that is not so for everyone.

Properties of the Natural Exponential Function:

1. The domain of $f(x)=e^{x}$ is $(-\infty, \infty)$, and the range is $(0, \infty)$.
2. The function $f(x)=e^{x}$ is continuous, increasing, and one-to-one on its entire domain.
3. The graph of $f(x)=e^{x}$ is concave upward on its entire domain.
4. $\lim _{x \rightarrow-\infty} e^{x}=0$ and $\lim _{x \rightarrow \infty} e^{x}=\infty$

Operations with Exponential Functions - Let a and b be any real numbers.

1. $e^{a} e^{b}=e^{a+b}$
2. $\frac{e^{a}}{e^{b}}=e^{a-b}$

Examples: Solve for x accurate to three decimal places.

1. $e^{\ln 2 x}=12$
2. $\ln 4 x=1$

$$
2 x=12
$$

$$
x=6
$$

$$
\text { 2. } \begin{aligned}
-6+3 e^{x} & =8 \\
3 e^{x} & =14 \\
e^{x} & =\frac{14}{3}
\end{aligned}
$$

$$
x=\ln (14 / 3)
$$

$$
x \approx 1.540
$$

$$
\begin{aligned}
& e^{e^{\prime}}=4 x \\
& \frac{e^{1}}{4}=x \\
& \quad x \approx 0.67957 \\
& x \approx 0.680 \quad{ }_{-1 p}^{4}
\end{aligned}
$$

Derivatives of Natural Exponential Functions - Let u be a differentiable function of x.

1. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$

This is why
mathematicians
"naturally" use e.
2. $\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}=u^{\prime} e^{u}$
chain rule derivative
of exponent

Examples: Find the derivative.

1. $y=e^{-5 x}$

$$
y^{\prime}=-5 e^{-5 x}
$$

3. $y=x e^{x}$

$$
y^{\prime}=x e^{x}+e^{x}(1)
$$

$y^{\prime}=x e^{x}+e^{x}$ this is good
or $y^{\prime}=e^{x}(x+1)$ but so is this!.

$$
\begin{aligned}
& \text { 5. } y=\frac{e^{x}-e^{-x}}{2} \\
& y=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& y^{\prime}=\frac{1}{2}\left(e^{x}-\left(-1 e^{-x}\right)\right) \\
& y^{\prime}=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& y^{\prime}=\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

2. $y=e^{-x^{2}}$

$$
\begin{aligned}
& y=e \\
& y^{\prime}=-2 x e^{-x^{2}}
\end{aligned}
$$

4. $y=x^{x} e^{-x} \quad x^{x} ?!? \log$ differentiation

$$
\begin{aligned}
& \ln y=\ln \left(x^{x} e^{-x}\right) \\
& \ln y=\ln \left(x^{x}\right)+\ln \left(e^{-x}\right) \\
& \ln y=x \ln x-x \ln e \\
& \ln y=x \ln x-x \\
& \frac{1}{y} \frac{d y}{d x}=x \cdot \frac{1}{x}+\ln x-1
\end{aligned} \quad\left[\begin{array}{l}
\frac{d y}{d x}=(1+\ln x-1) y \\
\frac{d y}{d x}=(\ln x) x^{x} e^{-x}
\end{array}\right.
$$

6. $y=\ln e^{x}$

$$
\begin{aligned}
& y=x \ln e \\
& y=x \\
& y^{\prime}=1
\end{aligned}
$$

Examples: Find the equation of the tangent line to the graph of the function at the given point.

$$
\begin{array}{rlrl}
\text { 1. } y=e^{-2 x+x^{2}},(2,1) & y-y_{1}=m\left(x-x_{1}\right) \text { where } m=f^{\prime}\left(x_{1}\right) \\
y^{\prime}=(-2+2 x) e^{-2 x+x^{2}} & y-1=2(x-2) \\
m=y^{\prime}(2) & =(-2+2(2)) e^{-2(2)+(2)^{2}} & y-1=2 x-4 \\
& =2 e^{0}=2 & y=2 x-3
\end{array}
$$

$$
\begin{aligned}
\text { 2. } f(x) & =e^{3} \ln x,(1,0) \\
f^{\prime}(x) & =e^{3} \cdot \frac{1}{x}=\frac{e^{3}}{x} \\
m=f^{\prime}(1) & =\frac{e^{3}}{1}=e^{3}
\end{aligned}
$$

$$
\begin{aligned}
& y-0=e^{3}(x-1) \\
& y=e^{3} x-e^{3}
\end{aligned}
$$

Note: e^{3} is just a constant

Example: Use implicit differentiation to find $d y / d x$ given $e^{x y}+x^{2}-y^{2}=10$. product rule in exponent

$$
\left.\begin{array}{l}
\left(x \frac{d y}{d x}+y(1)\right) e^{x y}+2 x-2 y \frac{d y}{d x}=0 \\
x e^{x y} \frac{d y}{d x}+y e^{x y}+2 x-2 y \frac{d y}{d x}=0 \\
x e^{x y} \frac{d y}{d x}-2 y \frac{d y}{d x}=-2 x-y e^{x y}
\end{array}\right) \quad \rightarrow\left(x e^{x y}-2 y\right) \frac{d y}{d x}=-2 x-y e^{x y}
$$

Example: Find the second derivative of $g(x)=\sqrt{x}+e^{x} \ln x$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{1}{2} x^{-1 / 2}+e^{x} \cdot \frac{1}{x}+(\ln x)\left(e^{x}\right)=\frac{1}{2} x^{-1 / 2}+\frac{e^{x}}{x}+e^{x} \ln x \\
& g^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}+\frac{x e^{x}-e^{x}}{x^{2}}+\frac{e^{x} \frac{1}{x}+(\ln x)\left(e^{x}\right)}{g^{\prime \prime}(x)=-\frac{1}{4 \sqrt{x^{3}}}+\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}}+\frac{e^{x}}{x}+e^{x} \ln x=\frac{-1}{4 \sqrt{x^{3}}}+\frac{2 e^{x}}{x}-\frac{e^{x}}{x^{2}}+\frac{e^{x} \ln x}{}} . l
\end{aligned}
$$

Notice the copies of the original that appear in the derivatives involving e^{x}

Integration Rules for Exponential Functions - Let u be a differentiable function of x.

1. $\int e^{x} d x=e^{x}+C$
2. $\int e^{u} d u=e^{u}+C$

Let it be easy! Do not overthink this.

Examples: Find the indefinite integral.

1. $\int e^{-x^{4}}\left(-4 x^{3}\right) d x=\int e^{u} d u=e^{u}+C=e^{-x^{4}}+C$

Let $u=-x^{4}$

$$
d u--4 x^{3} d x
$$

natural sulostitution $u=$ exponent
(when possible)

$$
\begin{aligned}
& \text { 2. } \int e^{x}\left(e^{x}+1\right)^{2} d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{\left(e^{x}+1\right)^{3}}{3}+C \quad u={ }^{\prime \prime} \operatorname{ins} d e^{\prime \prime} \\
& \text { Let } u=e^{x}+1
\end{aligned}
$$

$$
d u=e^{x} d x
$$

3. $\int \frac{e^{2 x}+2 e^{x}+1}{e^{x}} d x=\int\left(e^{x}+2+e^{-x}\right) d x=e^{x}+2 x-e^{-x}+C$

Simplify first.

$$
\frac{e^{2 x}}{e^{x}}+\frac{2 e^{x}}{e^{x}}+\frac{1}{e^{x}}=e^{x}+2+e^{-x}
$$

$$
\begin{aligned}
u & =-x \\
d u & =-d x \quad \int e^{-x} d x--\int e^{u} d u \\
-d u & =d x
\end{aligned}
$$

Examples: Evaluate the definite integral.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
\int_{3}^{4} e^{3-x} d x \quad=-\int_{0}^{-1} e^{u} d u & =-\left.e^{u}\right|_{0} ^{-1}
\end{aligned}=-e^{-1}-\left(-e^{0}\right) \\
& u=3-x \quad x=3 u=0=-\frac{1}{e}+1 \\
& d u=-d x \quad \begin{array}{l}
x=4 u=-1
\end{array} \\
&-d u=d x
\end{aligned}
$$

2. $\int_{0}^{1} \frac{e^{x}}{5-e^{x}} d x=-\int_{4}^{5-e} \frac{1}{u} d u=-\left.\ln |u|\right|_{4} ^{5-e}=-\ln |5-e|-(-\ln |4|)$

Let $u=5-e^{x}$

$$
=\ln 4-\ln |5-e|
$$

