5.5 Bases Other than e and Applications

Definition - If a is a positive real number not equal to 1 and x is any real number, then the exponential function to the base a is denoted by a^{x} and is defined by $a^{x}=e^{(\ln a) x}$. If $a=1$, then $y=1^{x}=1$ is a constant function.

Definition - If a is a positive real number not equal to 1 and x is any positive real number, then the logarithmic function to the base a is denoted by $\log _{a} x$ and is defined as $\log _{a} x=\frac{1}{\ln a} \ln x$.

> *

Properties of Inverse Functions -

1. $y=a^{x}$ if and only if $x=\log _{a} y$
2. $a^{\log _{a} x}=x$, for $x>0$
3. $\log _{a} a^{x}=x$, for all x

Examples: Evaluate

1. $\log _{2} \frac{1}{8}=x$
2. $\log _{7} 1=y$
3. $\log _{a} \frac{1}{a}=b$
$2^{x}=\frac{1}{8}$
$2^{x}=\frac{1}{2^{3}}=2^{-3}$ $x=-3$
$\log _{2}\left(\frac{1}{8}\right)=-3$
$7^{y}=1$
y must be 0
$\log _{7} 1=0$
$a^{b}=\frac{1}{a}=a^{-1}$
$b=-1$ so $\log _{a} \frac{1}{a}=-1$

Examples: Solve

1. $\log _{3} \frac{1}{81}=x$

$$
\begin{gathered}
3^{x}=\frac{1}{81}=3^{-4} \\
x=-4
\end{gathered}
$$

2. $\log _{b} 27=3$

$$
\begin{aligned}
& b^{3}=27=3^{3} \\
& \text { so } b=3
\end{aligned}
$$

$$
2^{6}=64
$$

3. $3 x+5=\log _{2} 64$

$$
3 x+5=6
$$

$$
3 x=1
$$

$$
x=\frac{1}{3}
$$

4. $\left.\frac{3\left(5^{x-1}\right.}{3}\right)=\frac{86}{3}$

$$
\begin{aligned}
& 5^{x-1}=\frac{86}{3} \\
& x-1=\log _{5}(86 / 3) \\
& x=1+\log _{3}(86 / 3) \approx 3.085
\end{aligned}
$$

Derivatives for bases other than e - Let a be a positive real number, not equal to 1 , and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}=\frac{u^{\prime}}{(\ln a) u}$

Examples: Find the derivative. Hint: sometimes using log properties first makes things easier.

1. $f(x)=3^{2 x}$

$$
\begin{array}{ll}
u=2 x & f^{\prime}(x)=(\ln 3) 3^{2 x} \cdot 2 \\
\frac{d u}{d x}=2 & f^{\prime}(x)=(2 \ln 3) 3^{2 x}
\end{array}
$$

3. $y=\frac{x\left(6^{-2 x}\right)}{\text { product rule }}$

$$
\begin{aligned}
& y^{\prime}=x(-2 \ln 6) 6^{-2 x}+\left(6^{-2 x}\right)(1) \\
& y^{\prime}=6^{-2 x}(-2 x \ln 6+1)
\end{aligned}
$$

2. $y=7^{2 x-1}$

$$
\begin{aligned}
& u=2 x-1 \\
& \frac{d u}{d x}=2
\end{aligned}
$$

4. $y=\log _{3}\left(x^{2}-3 x\right)$

$$
y=\frac{1}{(\ln 3)\left(x^{2}-3 x\right)} \cdot(2 x-3)=\frac{2 x-3}{(\ln 3)\left(x^{2}-3 x\right)}
$$

5. $y=\log _{10} \frac{x^{2}-1}{x}$

Rewrite: $y=\log \left(x^{2}-1\right)-\log x$

$$
y^{\prime}=\frac{2 x}{(\ln 10)\left(x^{2}-1\right)}-\frac{1}{(\ln 10) x}
$$

Example: Find an equation of the tangent line to the graph of $y=5^{x-2}$ at the point $(2,1)$.

$$
\begin{array}{ll}
y^{\prime}=(\ln 5) 5^{x-2} & y-1=\ln 5(x-2) \\
m=(\ln 5)\left(5^{2-2}\right)=\ln 5 & y-1=x \ln 5-2 \ln 5 \\
y=(\ln 5) x-2 \ln 5+1
\end{array}
$$

Example: Use logarithmic differentiation to find $\mathrm{dy} / \mathrm{dx}$ for $y=x^{x-1}$.

$$
\left.\begin{array}{l}
\ln y=\ln x^{x-1} \\
\ln y=(x-1) \ln x \\
\frac{1}{y} \frac{d y}{d x}=1+\ln x-\ln x
\end{array}\right\} \begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=x \cdot \frac{1}{x}+\ln x-\frac{1}{x}
\end{aligned} \int \frac{d y}{d x}=\left(1+\ln x-\frac{1}{x}\right)\left(x^{x-1}\right)
$$

Integration Formula $-\int a^{x} d x=\left(\frac{1}{\ln a}\right) a^{x}+C$
derivative multiplies, integral divides

Examples: Find the integral

1. $\int\left(x^{3}+3^{x}\right) d x$

$$
=\int x^{3} d x+\int 3^{x} d x=\frac{x^{4}}{4}+\frac{1}{\ln 3} \cdot 3^{x}+C=\frac{x^{4}}{4}+\frac{3^{x}}{\ln 3}+C
$$

2. $\int(3-x) 7^{(3-x)^{2}} d x$

Let $u=(3-x)^{2}$

$$
d u=2(3-x)(-1) d x
$$

$$
\longrightarrow \frac{1}{2} \int^{u} d u=-\frac{1}{2} \cdot \frac{1}{\ln 7} \cdot 7^{u}+C=-\frac{7^{(3-x)^{2}}}{2 \ln 7}+C
$$

$$
-\frac{1}{2} d u=(3-x) d x
$$

$$
\begin{aligned}
& \text { 3. } \int 2^{\sin x} \cos x d x=\int 2^{u} d u=\frac{2^{u}}{\ln 2}+C=\frac{2^{\sin x}}{\ln 2}+C \\
& \text { Let } u=\sin x \\
& d u=\cos x d x
\end{aligned}
$$

Example: Find the area of the region bounded by $y=3^{\cos x} \sin x, y=0, x=0, x=\pi$

$$
\begin{aligned}
& \int_{0}^{\pi} 3^{\cos x} \sin x d x=-\int_{1}^{\text {funtegral }} 3^{u} d u=-\left.\frac{3^{n}}{\ln 3}\right|_{1} ^{-1}=\frac{-3^{-1}}{\ln 3}-\left(\frac{-3^{1}}{\ln 3}\right)=\frac{3}{\ln 3}-\frac{1}{3 \ln 3} \\
& u=\cos x \quad x=0, u=1 \\
& d u=-\sin x d x \quad x=\pi \quad u=-1 \\
& -d u=\sin x d x
\end{aligned}
$$

Theorem 5.15 - A limit involving $e: \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=e$.

I give you this theorem as the development of the constant e from financial formulas. It is a good thing to know, but not essential.

