Section 3.8 Newton's Method:

A technique for approximating the real zeros of a Function.

What is the derivative of a function?

What is the derivative of a function?

 $f'(x_1) = m$; slope of the tangent line at some x_1 .

Using the point slope formula: $y-y_1=m(x-x_1)$ $y-y_1=f'(x_1)(x-x_1)$

Using the point slope formula:

$$y-y_1=m(x-x_1)$$

$$y - y_1 = f'(x_1)(x - x_1)$$

$$y - f(x_1) = f'(x_1)(x - x_1)$$

Using the point slope formula:

$$y-y_1=m(x-x_1)$$

$$y - y_1 = f'(x_1)(x - x_1)$$

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y = f(x_1) + f'(x_1)(x - x_1)$$

$$o = f(x_1) + f'(x_1)(x - x_1)$$

$$o = f(x_1) + f'(x_1)(x - x_1)$$
Distribute $f'(x_1)$

$$o = f(x_1) + f'(x_1)x - f'(x_1)x_1$$

$$o = f(x_1) + f'(x_1)(x - x_1)$$

o =
$$f(x_1) + f'(x_1)x - f'(x_1)x_1$$

Isolate $f'(x_1)x$
 $f'(x_1)x = f'(x_1)x_1 - f(x_1)$

$$o = f(x_1) + f'(x_1)(x - x_1)$$

$$o = f(x_1) + f'(x_1)x - f'(x_1)x_1$$

$$f'(x_1)x = f'(x_1) x_1 - f(x_1)$$

Solve for x
 $x = [f'(x_1)/f'(x_1)] x_1 - [f(x_1)/f'(x_1)]$

$$o = f(x_1) + f'(x_1)(x - x_1)$$

$$o = f(x_1) + f'(x_1)x - f'(x_1)x_1$$

$$f'(x_1)x = f'(x_1)x_1 - f(x_1)$$

$$x = [f'(x_1)/f'(x_1)] x_1 - [f(x_1)/f'(x_1)]$$

$$x = x_1 - f(x_1) / f'(x_1)$$

• If we do this again and again we have the process which is called Newton's Method.

Newton's Method for Approximating the Zeros of a Function:

- Let f(c) = o, where f is differentiable on an open interval containing c. Then, to approximate c, use the following steps.
- 1. Make an initial estimate that is close to c. (A graph is helpful)
- 2. Determine a new approximation $x_{n+1} = x_n f(x_n) / f'(x_n)$
- If $|x_n x_{n+1}|$ is within the desired accuracy, let x_{n+1} serve as the final approximation. Otherwise, return to Step 2 and calculate a new approximation.

Each successive application of this procedure is called an iteration.

Graph of $f(x) = 3(x-1)^{1/2}-x$

Newton's Method: $f(x) = 3(x-1)^{1/2} - x$

Problem 7	Xn	f(xn)	f '(xn)	$f(x_n)/f'(x_n)$	x_n - $f(x_n)/f'(x_n)$	
$f(x)=3^*(x-1)^{1/2}-x$						
	1.1000	-0.1513	3.7434	-0.0404	1.1404	
	1.1404	-0.0162	3.0029	-0.0054	1.1458	
	1.1458	-0.0002	2.9280	-0.0001	1.1459	
	1.1459	0.0000	2.9271	0.0000		X =1.1459
	7.1000	0.3095	-0.3927	-0.7881	7.8881	
	7.8881	-0.0145	-0.4285	0.0339	7.8542	
	7.8542	0.0000	-0.4271	0.0001	7.8541	
	7.8541	0.0000	-0.4271	0.0000		x =7.8541

Graph of $f(x) = x^3 + 3$

Newton's Method: $f(x) = x^3 + 3$

Problem 9	Xn	f(x)	f '(xn)	$f(x_n)/f'(x_n)$	x_n - $f(x_n)/f'(x_n)$	
$f(x)=x^3+3$	-2.0000	-5.0000	12.0000	-0.4167	-1.5833	
	-1.5833	-0.9693	7.5208	-0.1289		
	-1.4544					
	-1.4424				· · ·	-1.4424