1.3 Linear Equations in Two Variables

The simplest mathematical model for relating two variables is the linear equation in two variables, $y=m x+b$. The m represents the slope, or tilt, of the line and b represents the y-intercept of the line. This is referred to as the slope-intercept form of a linear equation.

The slope m of a line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where $x_{1} \neq x_{2}$.

Using a generic point (x, y) in place of the second point in the slope formula leads us to the point-slope form of the equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$.

$$
\begin{aligned}
\left(x-x_{1}\right) m=\frac{y-y_{1}}{x-x_{1}}\left(x-x_{1}\right) \rightarrow & \left(x-x_{1}\right) m=y-y_{1} \\
& \text { But it looks better as } \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

Examples: Find the slope and y-intercept of the line through the given pair of points. Then write the equation of the line in slope-intercept form.

$$
\begin{aligned}
& \text { 1. }(12,0),(0,-8) \\
& m=\frac{-8-0}{0-12}=\frac{-8}{-12}=\frac{-4(2)}{-4(3)}=\frac{2}{3} \quad \begin{array}{l}
\text { y-intercept is } \\
\text { given as }(0,-8)
\end{array} \\
& y=\frac{2}{3} x-8
\end{aligned}
$$

2. $(2,4),(4,-4)$

$$
\begin{array}{ll}
2 .(2,4),(4,-4) \\
m=\frac{-4-4}{4-2}=\frac{-8}{2}=-4 & y-4=-4(x-2) \\
y-4=-4 x+8
\end{array}
$$

$$
\begin{array}{ll}
\text { equation } \longrightarrow & y=-4 x+12 \\
y \text {-int is }(0,12)
\end{array}
$$

$$
\begin{aligned}
& m=\frac{-5-1}{-4-(-2)}=\frac{-6}{-4+2}=\frac{-6}{-2}=3 \\
& y-1=3(x-(-2)) \quad \int y-1=3 x+6 \quad y \text {-int }(0,7) \\
& y-1=3(x+2)
\end{aligned} \quad y=3 x+7 \quad \text { F equation } \quad l y
$$

Examples: Use the point and slope given to find three other points through which the line passes.

1. $(3,-2)$ with $m=-1$

$$
\begin{array}{rr}
\text { 1. }(3,-2) \text { with } m=-1 \\
m=-1=\frac{-1}{1}=\frac{\text { down 1 }}{\text { right 1 }} & \text { start } \begin{array}{l}
(3,-2) \\
(4,-3) \\
(5,-4)
\end{array} \\
\text { Note } m=-1=\frac{1}{-1}=\frac{4 p!}{(6,-5)}
\end{array}
$$

is a possibility as well
2. (-5,4) with $m=2$

$$
m=2=\frac{2}{1}=\frac{u p 2}{\text { right } 2}
$$

$$
\begin{aligned}
& (-5,4) \\
& +1+2
\end{aligned}
$$

Also possible is

$$
(-4,6) \quad \text { up } 2, \text { right } 1
$$

$$
m=2=\frac{-2}{-1}=\frac{\text { down } 2}{\text { left } 1}
$$

$$
+1+2
$$

$$
(-3,8)
$$

$$
(-2,10)
$$

Slopes can be used to determine if two nonvertical lines in a plane are parallel or perpendicular.

1. Two distinct nonvertical lines are parallel if and only if their slopes are equal. That is, $m_{1}=m_{2}$
2. Two nonvertical lines are perpendicular if and only if their slopes are negative reciprocals of each other. That is, $m_{1}=-\frac{1}{m_{2}}$.

$$
\begin{array}{cc}
y=3 x+6 & \text { and } \\
y=3 x-17 & \text { are parallel } \\
y=\frac{1}{3} x-2 & \text { and } y=-3 x+1 \text { are perpendicular } \\
L_{1} & =\frac{1}{3} \\
& m_{2}=-3 \\
\text { opposite signs, reciprocals }
\end{array}
$$

Example: You are driving on a road that has a 6% uphill grade. This means that the slope of the road is $6 / 100$. Approximate the amount of vertical change in your position if you drive 200 feet.

$$
\begin{aligned}
& \text { shape is } \frac{\text { Change in y }}{\text { Change int }}=\frac{6}{100} \frac{\text { vertical }}{\text { horizotalal }} \\
& \frac{6}{100}=\frac{y}{200} \text { So } y=12 \mathrm{ft}
\end{aligned}
$$

Example: A microchip manufacturer pays its assembly line workers $\$ 12.25$ per hour. In addition, workers receive a piecework rate of $\$ 0.75$ per unit produced. Write a linear equation for the hourly wage W in terms of the number of units x produced per hour.

$$
W(x)=0.75 x+12.25 \text { per hour }
$$

Example: A pharmaceutical salesperson receives a monthly salary of $\$ 2500$ plus a commission of 7% of sales. Write a linear equation for the salesperson's monthly wage W in terms of monthly sales S .
variable

$$
W(S)=0.07 S+2500
$$

fixed
Capital 5
watch for this on weblssign

