1.4 Functions

Definition: A function f from a set A to a set B is a relation that assigns to each element x in the set A
exactly one element y in the set B. The set A is the domain (or set of inputs) of the function f, and the set
B contains the range (or set of outputs).

Characteristics of a Function from Set A to Set B:
1. Each element in A must be matched with an element in B.
2. Some elements in B may not be matched with any element in A.
3. Two or more elements in A may be matched with the same element in B.

4. An element in A (the domain) cannot be matched with two different elements in B.

Four Ways to Represent a Function:

1. Verbally — by a sentence that describes how the input variable is related to the output
variable.

2. Numerically —by a table or a list of ordered pairs that matches input values with output
values.

3. Graphically — by points on a graph in a coordinate plane in which the input values are
represented by the horizontal axis and the output values are represented by the vertical
axis.

4. Algebraically — by an equation in two variables.

Frequently we refer to the domain values as the independent variable and the range values as the
dependent variable. (This is because the output depends on the input we select.) As the input value is x
and the output value is y, we can say that y depends on x. Or, using the word function, y is a function of

x. But we would hate to write that out all the time so we use the notation y = f(x) which means the

same thing.



Examples: Function or not?
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Examples: Evaluate the function and simplify.
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Examples: Find all the real values of x such that f(x) = 0.
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The domain of any function f consists of all real numbers x for which the function is defined. This means
that we really only need to check denominators and radicands.
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1. Write the area A of a square as a function of its perimeter P.
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2. Write the area A of a circle as a function of its circumference C. C
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3. The height y (in feet) of a baseball thrown by a childis y = —Exz +3x+6 where x is the

horizontal distance (in feet) from where the ball was thrown. Will the ball fly over the head of
another child 30 feet away trying to catch the ball? (Assume that the child who is trying to catch
the ball holds a baseball glove at a height of 5 feet.)
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One of the basic definitions in calculus uses the difference quotient:

f(x+h)—f(x)'h¢0.
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Examples: Find the difference quotient and simplify.
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