1.8 Combinations of Functions: Composite Functions

Sum, Difference, Product, and Quotient of Functions – Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.

1. Sum: (f+g)(x) = f(x) + g(x)2. Difference: (f-g)(x) = f(x) - g(x)3. Product: (fg)(x) = f(x)g(x)4. Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$

Example: Find the sum, difference, product and quotient for f(x) = 3x + 1 and $g(x) = \sqrt{1-x}$.

 $(f+g)(x) = f(x)+g(x) = 3x+1+\sqrt{1-x} \qquad (fg)(x) = f(x)\cdot g(x) = (3x+1)\sqrt{1-x} \\ (f-g)(x) = f(x)-g(x) = 3x+1-\sqrt{1-x} \qquad (\frac{f}{g})(x) = \frac{f(x)}{g(x)} = \frac{3x+1}{\sqrt{1-x}}, \ x \leq 1$

All of those act just like we would expect them too. The fifth operation on functions is the important one because it is not found when combining other mathematical objects.

 $(f \circ g)(x) = f(g(x))$ **Definition**: The composition of the function *f* with the function *g* is $(f \circ f(g(x)))$. The domain of $f \circ f(g(x))$ is the set of all *x* in the domain of *g* such that g(x) is in the domain of *f*.

Examples: Find the compositions in both orders for the given functions.

1.
$$f(x) = \sqrt[3]{x-5}$$
 and $g(x) = x^3 + 1$
(fog)(x) = f(g(x))
= $f(x^3+1)$
= $\sqrt[3]{x-5}$
=

2.
$$f(x) = |x-4| \text{ and } g(x) = 3-x$$

(f og)(x) = $f(g(x))$
= $f(3-x)$
= $|(3-x)-4|$
= $|-1-x|$
(g o f)(x) = $g(f(x))$
= $g(|x-4|)$
= $3-|x-4|$

Examples: Find two functions f and g such that $(f \circ h(x) = h(x)$ This is a valuable skill for Calculus,

1.
$$h(x) = (1-x)^{3}$$

 $\ln = 1-x$
 $bvt = L$)³
2. $h(x) = \sqrt{9-x}$
 $\ln = 9-x$
 $bvt = \sqrt{L}$
 $\int bvt = \sqrt{$

3.
$$h(x) = \frac{4}{(5x+2)^2}$$
One possibility is another possibility

$$q(x) = 5x+2$$
is $q(x) = (5x+2)^2$

$$q(x) = 5x+2$$
is $q(x) = (5x+2)^2$

$$f(x) = \frac{4}{x}$$
But there are many other
Options as well.
4.
$$h(x) = \frac{27x^3 + 6x}{10 - 27x^3}$$
This one is a let $q(x) = 3x$
Challenge. Notice
that $(3x)^3 = 27x^3$
So ... and $f(x) = \frac{x^3 + 2x}{10 - x^3}$
5.
$$h(x) = \frac{1}{x+2}$$
Let $q(x) = x+2$ and $f(x) = \frac{1}{x}$
6.
$$h(x) = \sqrt[3]{x^2 - 4}$$
Let $q(x) = x^2 - 4$ and $f(x) = \sqrt[3]{x}$

Example: The number *N* of bacteria in a refrigerated food is given by $N(T) = 10T^2 - 20T + 600, \ 1 \le T \le 20$ where *T* is the temperature of the food in degrees Celsius. When the food is removed from refrigeration, the temperature of the food is given by $T(t) = 3t + 2, \ 0 \le t \le 6$ where *t* is time in hours.

a) Find the composition N(T(t)) and interpret its meaning in context. $N(T(t)) = N(3t+2) = 10(3t+2)^2 - 20(3t+2) + 600$ $= 10(9t^2 + 12t+4) - 60t - 40 + 600$ $= 90t^2 + 12t+40 - 60t + 500$ $= 90t^2 + 60t + 600$ b) Find the bacteria count after 0.5 hours.

$$N(T(v,s)) = 90(.5)^{2} + 60(.5) + 600$$

$$= 90(.25) + 30 + 600$$

$$= 22.5 + 30 + 600$$

$$\equiv 652.5 \text{ bacteria}$$

c) Find the time when the bacteria count reaches 1500.

$$t = N = 1500$$

$$l = 90t^{2} + 60t + 600$$

$$0 = 90t^{2} + 60t - 900$$

$$0 = 3t^{2} + 2t - 30$$

$$t = -\frac{(2)t}{2(3)} = \frac{-2 \pm \sqrt{364}}{6}$$

$$t = \frac{-(2)t}{2(3)} = \frac{-2 \pm \sqrt{364}}{6}$$

$$t \approx -3.5$$
 hours or $t = 2.846$ hours
about 2.8 hours or 2448min.