1.8 Combinations of Functions: Composite Functions

Sum, Difference, Product, and Quotient of Functions - Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.

1. Sum:

$$
(f+g)(x)=f(x)+g(x)
$$

2. Difference: $(f-g)(x)=f(x)-g(x)$
3. Product: $\quad(f g)(x)=f(x) g(x)$
4. Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$

Example: Find the sum, difference, product and quotient for $f(x)=3 x+1$ and $g(x)=\sqrt{1-x}$.

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x)=3 x+1+\sqrt{1-x} & (f g)(x)=f(x) \cdot g(x)=(3 x+1) \sqrt{1-x} \\
(f-g)(x)=f(x)-g(x)=3 x+11-\sqrt{1-x} & \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{3 x+1}{\sqrt{1-x}}, x<1
\end{array}
$$

All of those act just like we would expect them too. The fifth operation on functions is the important one because it is not found when combining other mathematical objects.

$$
(f \circ g)(x)=f(g(x))
$$

Definition: The composition of the function f with the function g is $(f \circ \quad f(g(x))$. The domain of $f \circ \quad$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

$$
\operatorname{In}_{n}(f \circ g)(x)=f(g(x)) \text {, I will refer to } g(x) \text { as the }
$$

$$
\text { "Inside" function and } f(x) \text { as the "outside" function. }
$$

Examples: Find the compositions in both orders for the given functions.

1. $f(x)=\sqrt[3]{x-5}$ and $g(x)=x^{3}+1$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(x^{3}+1\right) \\
& =\sqrt[3]{\left(x^{3}+1\right)-5} \\
& =\sqrt[3]{x^{3}-4}
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(\sqrt[3]{x-5}) \\
& =(\sqrt[3]{x-5})^{3}+1 \\
& =x-5+1 \\
& =x-4
\end{aligned}
$$

* Notice fog $\#$ go in general *

2. $f(x)=|x-4|$ and $g(x)=3-x$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(3-x) \\
& =|(3-x)-4| \\
& =|-1-x|
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(|x-4|) \\
& =3-|x-4|
\end{aligned}
$$

$$
(f \circ g)(x)=h(x)
$$

Examples: Find two functions f and g such that $\left(f_{0} \quad h(x)\right.$ Answers vary greatly!! This is a valuable skill for calculus.

1. $h(x)=(1-x)^{3}$

$$
\begin{aligned}
& \text { In }=1-x \\
& \text { out }=()^{3}
\end{aligned} \quad \text { so let } g(x)=1-x
$$

2. $h(x)=\sqrt{9-x}$
$1 n=9-x$
so let
out $=\sqrt{l)}$
3. $h(x)=\frac{4}{(5 x+2)^{2}}$
one possibility is
another possibility

$$
\begin{aligned}
& g(x)=5 x+2 \\
& f(x)=\frac{4}{x^{2}}
\end{aligned}
$$

$$
\text { is } \begin{aligned}
g(x) & =(5 x+2)^{2} \\
f(x) & =\frac{4}{x}
\end{aligned}
$$

But there are many other options as well.
4. $h(x)=\frac{27 x^{3}+6 x}{10-27 x^{3}}$

This one is a
Challenge. Notice so... and $f(x)=\frac{x^{3}+2 x}{10-x^{3}}$
that $(3 x)^{3}=27 x^{3}$

$$
\begin{aligned}
\text { let } g(x) & =3 x \\
\text { so } . . . \text { and } f(x) & =\frac{x^{3}+2 x}{10-x^{3}}
\end{aligned}
$$

5. $h(x)=\frac{1}{x+2}$ Let $g(x)=x+2$ and $f(x)=\frac{1}{x}$
6. $h(x)=\sqrt[3]{x^{2}-4} \quad$ Let $g(x)=x^{2}-4$ and $f(x)=\sqrt[3]{x}$

Example: The number N of bacteria in a refrigerated food is given by $N(T)=10 T^{2}-20 T+600,1 \leq T \leq 20$ where T is the temperature of the food in degrees Celsius. When the food is removed from refrigeration, the temperature of the food is given by $T(t)=3 t+2,0 \leq t \leq 6$ where t is time in hours.
a) Find the composition $N(T(t)$) and interpret its meaning in context.

$$
\begin{aligned}
W(T(t))=N(3 t+2) & =10(3 t+2)^{2}-20(3 t+2)+600 \\
& =10\left(9 t^{2}+12 t+4\right)-60 t-40+600 \\
& =90 t^{2}+120 t+40-60 t+560 \\
& =90 t^{2}+60 t+600
\end{aligned}
$$

b) Find the bacteria count after 0.5 hours.

$$
\begin{aligned}
N(T(0.5)) & =90(.5)^{2}+60(.5)+600 \\
& =90(.25)+30+600 \\
& =22.5+30+600 \\
& \equiv 652.5 \text { bacteria }
\end{aligned}
$$

c) Find the time when the bacteria count reaches 1500 .

$$
\begin{aligned}
& t \\
& 1500=90 t^{2}+60 t+600 \\
& 0=90 t^{2}+60 t-900 \quad \text { Divide by } 30 \\
& 0=3 t^{2}+2 t-30 \\
& t=\frac{-(2) \pm \sqrt{(2)^{2}-4(3)(-30)}}{2(3)}=\frac{-2 \pm \sqrt{364}}{6}
\end{aligned}
$$

$$
t \approx-3.5 \text { hours or } t=2.846 \text { hours }
$$

about 2.8 hours or $2 h 48 \mathrm{~min}$.

