2.4 Complex Numbers

For centuries mathematics has been an ever-expanding field because of one particular "trick." Whenever a notable mathematician gets stuck on a problem that seems to have no solution, they make up something new. This is how complex numbers were "invented." A simple quadratic equation would be $x^{2}+1=0$. However, in trying to solve this it was found that $x^{2}=-1$ and that was confusing. How could a quantity multiplied by itself equal a negative number?

This is where the genius came in. A guy named Cardano developed complex numbers off the base of the imaginary number $i=\sqrt{-1}$, the solution to our "easy" equation $x^{2}=-1$. The system didn't really get rolling until Euler and Gauss started using it, but if you want to blame someone it should be Cardano.

My Definition - The imaginary unit i is a number such that $i^{2}=-1$. That is, $i=\sqrt{-1}$.

Definition of a Complex Number - If a and b are real numbers, the number $a+b i$ is a complex number, and it is said to be written in standard form. If $b=0$, the number $a+b i=a$ is a real number. If $b \neq 0$, the number $a+b i$ is called an imaginary number. A number of the form $b i$, where $b \neq 0$, is called a pure imaginary number.

Equality of Complex Numbers - Two complex numbers $a+b i$ and $c+d i$, written in standard form, are equal to each other $a+b i=c+d i$ if and only if $a=c$ and $b=d$.

Addition and Subtraction of Complex Numbers - If $a+b i$ and $c+d i$ are two complex numbers written in standard form, their sum and difference are defined as follows.

$$
\text { Sum: } \quad(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

$$
\text { Difference: } \quad(a+b i)-(c+d i)=(a-c)+(b-d) i
$$

To multiply complex numbers, use the distributive property keeping in mind that $i^{2}=-1$.

Examples: Write the complex number in standard form.

1. $5+\sqrt{-36}$

$$
\begin{aligned}
& 5+\sqrt{36(-1)}=5+6 i \\
& \sqrt{36(-1)}=\sqrt{36} \sqrt{-1}=6 i
\end{aligned}
$$

2. $1+\sqrt{-8}$

$$
\begin{aligned}
1+\sqrt{8(-1)}=1+\sqrt{4(-1)(2)}=1+2 i \sqrt{2} \\
\sqrt{4(-1)(2)}=\sqrt{4} \sqrt{-1} \sqrt{2}=2 i \sqrt{2}
\end{aligned}
$$

3. $-4 i^{2}+2 i$

$$
-4(-1)+2 i=4+2 i
$$

4. $\sqrt{-4}$

$$
\sqrt{4(-1)}=\sqrt{4} \sqrt{-1}=2 i
$$

5. You try it: $\sqrt{-75}+3 i^{2}$

Examples: Perform the addition or subtraction and write the result in standard form.

1. $(13-2 i)+(-5+6 i)$

$$
=(13+(-5))+(-2 i+6 i)=8+4 i
$$

2. $(3+2 i)-(6+13 i)$

$$
=(3-6)+(2 i-13 i)=-3-11 i
$$

$$
\begin{aligned}
& \text { 3. }(\underline{-2+\sqrt{-8})}+(\underline{(5-\sqrt{-50})}=(-2+2 i \sqrt{2})+(5-5 i \sqrt{2})=3-3 i \sqrt{2} \\
& \sqrt{-8}=\sqrt{4(-1)(2)}=2 i \sqrt{2} \\
& \sqrt{-50}=\sqrt{25(-1)(2)}=5 i \sqrt{2}
\end{aligned}
$$

Examples: Multiply and write the result in standard form.

1. $(7-2 i)(3-5 i)$

$$
\begin{aligned}
& =21-35 i-6 i+10 i^{2} \\
& =21-41 i+10(-1) \\
& =21-41 i-10 \\
& =11-41 i
\end{aligned}
$$

2. $-8 i(9+4 i)$

$$
\begin{aligned}
& =-72 i-32 i \\
& =-72 i-32(-1) \\
& =-72 i+32
\end{aligned}
$$

3. $(\sqrt{3}+\sqrt{15} i)(\sqrt{3}-\sqrt{15 i})$

$$
\begin{aligned}
& =\sqrt{3} \sqrt{3}-\sqrt{3} \sqrt{15} i+\sqrt{15} i \sqrt{3}-(\sqrt{15} i)(\sqrt{15} i) \\
& =3-15 i 2 \\
& =3-15(-1) \\
& =3+15=18
\end{aligned}
$$

When factoring, we have a formula called the difference of squares: $a^{2}-b^{2}=(a+b)(a-b)$. The factors on the right side of the equation are known as conjugates. In this section we are concerned with complex conjugates and have a new factoring/multiplying formula: $(a+b i)(a-b i)=a^{2}+b^{2}$. We use complex conjugates to "rationalize" the denominators of quotients involving complex numbers.

Examples: Write the quotient in standard form.

1. $\frac{-14}{2 i}=\frac{-7}{i} \cdot \frac{i}{i}=\frac{-7 i}{i^{2}}=\frac{-7 i}{-1}=7 i$
2. $\frac{13}{1-i} \cdot \frac{1+i}{1+i}=\frac{13+13 i}{1^{2}+1^{2}}=\frac{13+13 i}{2}=\frac{13}{2}+\frac{13}{2} i$
3. $\frac{6-7 i}{1-2 i} \cdot \frac{1+2 i}{1+2 i}=\frac{6+12 i-7 i-14 i^{2}}{1^{2}+2^{2}}=\frac{6+5 i+14}{5}=\frac{20+5 i}{5}=4+i$
4. You try it: $\frac{2-i}{1+7 i}$

Examples: Perform the operation and write the result in standard form.

1. $\frac{2 i}{2+i}+\frac{5}{2-i}$ To add fractions we need a common denominator. $2+i \quad 2-i$

$$
\begin{aligned}
& \frac{2 i}{2+i} \cdot \frac{2-i}{2-i}=\frac{4 i-2 i^{2}}{2^{2}+1^{2}}=\frac{2+4 i}{5} \\
& \frac{5}{2-i} \cdot \frac{2+i}{2+i}=\frac{10+5 i}{2^{2}+1^{2}}=\frac{10+5 i}{5}
\end{aligned}
$$

$$
5 \cdot \underline{2+i}=\underline{10+5 i}=\underline{10+5 i} \text { we cold simplify, instead }
$$

we keep the common denom.
in order to add

$$
\frac{2+4 i}{5}+\frac{10+5 i}{5}=\frac{12+9 i}{5}=\frac{12}{5}+\frac{9}{5} i
$$

$$
\begin{aligned}
& \text { 2. } \frac{1+i}{i}-\frac{3}{4-i} \\
& \frac{1+i}{i} \cdot \frac{i}{i}=\frac{i+i^{2}}{i^{2}}=\frac{-1+i}{-1}=1-i \\
& \frac{3}{4-i} \cdot \frac{4+i}{4+i}=\frac{12+3 i}{4^{2}+i^{2}}=\frac{12+3 i}{17} \\
& 1-i-\frac{12+3 i}{17}=\frac{1-i}{1} \cdot \frac{17}{17}-\frac{12+3 i}{17}=\frac{17-17 i}{17}-\frac{12+3 i}{17}=\frac{5-20 i}{17} \\
& =\frac{5}{17}-\frac{20}{17} i
\end{aligned}
$$

Principal Square Root of a Negative Number - If a is a positive number, the principal square root of the negative number $-a$ is defined as $\sqrt{-a}=\sqrt{a} i=i \sqrt{a}$.

My Definition - The solutions of $a x^{2}+b x+c=0$ are given by the quadratic formula to be $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. When you simplify, simplify the radical first and then the overall fraction.

Examples: Use the Quadratic Formula to solve the quadratic equation.

$$
\begin{array}{ll}
\text { 1. } x^{2}+6 x+10=0 & 2.16 t^{2}-4 t+3=0 \\
a=1 \quad b=6 \quad c=10 & a=16 \quad 6=-4 \quad c=3 \\
x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(10)}}{2(1)} & t=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(16)(3)}}{2(16)} \\
x=\frac{-6 \pm \sqrt{-4}}{2} & t=\frac{4 \pm \sqrt{-176}}{32}=\frac{4 \pm \sqrt{16(-1)(11)}}{32} \\
x=\frac{-6 \pm 2 i}{2} & t=\frac{4 \pm 4 i \sqrt{11}}{32}=\frac{4}{32} \\
x=\frac{-3 \pm i}{32}
\end{array}
$$

