2.4 Complex Numbers

For centuries mathematics has been an ever-expanding field because of one particular “trick.”
Whenever a notable mathematician gets stuck on a problem that seems to have no solution, they make
up something new. This is how complex numbers were “invented.” A simple quadratic equation would

be x*+1=0. However, in trying to solve this it was found that x* =—1 and that was confusing. How
could a quantity multiplied by itself equal a negative number?

This is where the genius came in. A guy named Cardano developed complex numbers off the base of the

imaginary number i =+/—1 , the solution to our “easy” equation x> =—1.The system didn’t really get
rolling until Euler and Gauss started using it, but if you want to blame someone it should be Cardano.

My Definition — The imaginary unit i is a number such thati> =—1 . Thatis, i =+/—1 .

Definition of a Complex Number —If a and b are real numbers, the number a + bi is a complex number,
and it is said to be written in standard form. If b = 0, the number a + bi = a is a real number. If b# 0, the
number a + bi is called an imaginary number. A number of the form bi, where b #0, is called a pure
imaginary number.

Equality of Complex Numbers — Two complex numbers a + bi and ¢ + di, written in standard form, are
equal to each other a+bi=c+diifandonlyifa=cand b =d.

Addition and Subtraction of Complex Numbers — If a + bi and ¢ + di are two complex numbers written in
standard form, their sum and difference are defined as follows.

Sum: (a+bi)+(c+di)=(a+c)+(b+d)i

Difference: (a+bi)—(c+di):(a—c)+(b—d)i

To multiply complex numbers, use the distributive property keeping in mind that i* =—1.



Examples: Write the complex number in standard form.
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5. You try it: =75 +3i°

Examples: Perform the addition or subtraction and write the result in standard form.

1. (13-2i)+(-5+6i)

= (134N + (L) = 4

2. (3+2i)—(6+13i)

= (3= + (-3 = -3 -
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Examples: Multiply and write the result in standard form.

1. (7-2i)(3-5i)
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When factoring, we have a formula called the difference of squares: a* —b* = (a+b)(a—b) .The

factors on the right side of the equation are known as conjugates. In this section we are concerned with

complex conjugates and have a new factoring/multiplying formula: (a +bi)(a —bi) =a’+b’. Weuse

complex conjugates to “rationalize” the denominators of quotients involving complex numbers.

Examples: Write the quotient in standard form.
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Examples: Perform the operation and write the result in standard form.
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Principal Square Root of a Negative Number — If a is a positive number, the principal square root of the

negative number —a is defined as \/—a = \/Ei = i\/g.

My Definition — The solutions of ax’ +bx+c=0 are given by the quadratic formula to be

—b++b* —4ac
X = . When you simplify, simplify the radical first and then the overall fraction.

2a

Examples: Use the Quadratic Formula to solve the quadratic equation.
2.16t° —4t+3=0

1. x> +6x+10=0
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