2.6 Rational Functions

Informal Definition of a Rational Function - A rational function is a quotient of polynomial functions. It can be written in the form $f(x)=\frac{N(x)}{D(x)}$ where $N(x)$ and $D(x)$ are polynomials and $D(x)$ is not the zero polynomial.

Domain of a Rational Function - In general, the domain of a rational function includes all real numbers except those that make the denominator zero.

Definitions of Vertical and Horizontal Asymptotes -

1. The line $x=a$ is a vertical asymptote of the graph of f if $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ as $x \rightarrow a$, either from the right or from the left.
2. The line $y=b$ is a horizontal asymptote of the graph of f if $f(x) \rightarrow b$ as $x \rightarrow \pm \infty$.

Important: Asymptotes are always equations of lines and never just a number.

$$
y=4 \text { is a horizontal asymptote; } 4 \text { is just a }
$$

$x=-2$ is a vertical asymptote; -2 is not.

Vertical and Horizontal Asymptotes of a Rational Function - Let f be the rational function given by

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}
$$

where $N(x)$ and $D(x)$ have no common factors.

1. The graph of f has vertical asymptotes at the zeros of $D(x)$.
2. The graph of f has one or no horizontal asymptote determined by comparing the degrees of $N(x)$ and $D(x)$.
a) If $n<m$, the graph of f has the line $y=0$ (the x-axis) as a horizontal asymptote.
b) If $n=m$, the graph of f has the line $y=\frac{a_{n}}{b_{m}}$ as a horizontal asymptote.
c) If $n>m$, the graph of f has no horizontal asymptote.

Examples: Find the domain of the rational functions then identify any vertical and horizontal asymptotes.

1. $f(x)=\frac{4}{(x-2)^{3}} \quad$ domain: $\begin{array}{rrr}(x-2)^{3} \neq 0 & \text { VA. } x=2 & \text { H.A. } y=0 \text {, } \\ x-2 \neq 0 & \text { closely } & \text { denom. has a } \\ x \neq 2 & \text { related } & \text { larger degree. }\end{array}$
2. $f(x)=\frac{3-7 x}{3+2 x}$

Domain: $3+2 x \neq 0 \quad$ V.A. $X=-\frac{3}{2}$

$$
\begin{aligned}
& 2 x \neq-3 \\
& x \neq-\frac{3}{2}
\end{aligned}
$$

degree of denom= degree of mum.
3. $f(x)=\frac{4 x^{2}}{x+2}$
VA.

$$
\text { H.A. } y=\ldots \text { NONe }
$$

$$
\text { Domain: } \begin{array}{rl}
x & +2 \neq 0 \\
x \neq-2 & x=-2
\end{array}
$$

$$
\text { HA. } y=-\frac{7}{2}
$$

deg denom< deg numerator
so no horizontal asymptote

Guidelines for Analyzing Graphs of Rational Functions - Let $f(x)=\frac{N(x)}{D(x)}$, where $N(x)$ and $D(x)$ are polynomials.

1. Simplify f, if possible.
2. Find and plot the y -intercept (if any) by evaluating $f(0)$.
3. Find the zeros of the numerator (if any) by solving the equation $N(x)=0$. Then plot the corresponding x-intercepts.
4. Find the zeros of the denominator (if any) by solving the equation $D(x)=0$. Then sketch the corresponding vertical asymptotes.
5. Find and sketch the horizontal asymptote (if any) by using the rule for finding the horizontal asymptote of a rational function.
6. Plot at least one point between and one point beyond each x-intercept and vertical asymptote.
7. Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Quick summary: ${ }^{1} D(x) \neq 0$ domain ${ }^{2} D(x)=0, N(x) \neq 0$ Vest. asymptote

$$
\begin{aligned}
& 3 D(x)=0, N(x)=0 \text { hole in graph }{ }^{4} D(x) \neq 0, N(x)=0 \text {-intercept } \\
& 5 f(0)=y \text {-intercept }{ }^{6} \text { degrees for horizontal asymptote }
\end{aligned}
$$

numerator denominator both numerator and denominator
Examples: Sketch the graph of the rational functions.

1. $f(x)=\frac{x+1}{x^{2}-1}=\frac{x+1}{(x+1)(x-1)}=\frac{1}{x-1}$ if we simplify

Domain: $x \neq-1,1$

hole at $x=-1$
vert, asymptote $x=1$
no x-intercept
y-intercept $(0,-1)$
horizontal asymptote $y=0$
random points to fill in: $\left(-2,-\frac{1}{3}\right)$

$$
\begin{aligned}
& (1.5,2) \\
& (2,1)
\end{aligned} \text { Basic rational graph }
$$

2. $f(x)=\frac{x^{2}-4}{x^{2}-3 x+2}=\frac{(x+2)(x-2)}{(x-2)(x-1)}=\frac{x+2}{x-1}$

Domain: $x \neq 2,1$
hole at $x=2$
vert. as $x=1$
$x-1$ int at $x=-2 \quad(-2,0)$
y-int at $y=-\frac{4}{2}=-2 \quad(0,-2)$
horiz. as y $y=\frac{1}{1}$ or $y=1$
extra point $(3,2,5)$

3. $f(x)=\frac{1}{x-3}$Domain: $x \neq 3$
V.A. $\quad x=3$
H.A. $\quad y=0$
no x-int
y-int $\left(0,-\frac{1}{3}\right)$
no holes
extra points: $\left(1,-\frac{1}{2}\right)(2,-1)$

$$
(4,1)\left(5, \frac{1}{2}\right)\left(6, \frac{1}{3}\right)
$$

Note: The graph of $f(x)=\frac{1}{x-3}$ is just the graph of $y=\frac{1}{x} \operatorname{shf}^{-f}$ ted right 3 units.
4. $f(x)=\frac{1-2 x}{x}$
points $(-1,-3)(-2,-2.5)$
Domain: $x \neq 0$
VA. $\quad x=0$
no holes
x-int $1-2 x=0$

$$
\begin{aligned}
2 x & =0 \\
x & =\frac{1}{2} \quad\left(\frac{1}{2}, 0\right)
\end{aligned}
$$

no y-int
HA. $y=-\frac{2}{1}$ or $y=-2$

5. $f(x)=\frac{2 x^{2}-5 x-3}{x^{3}-2 x^{2}-x+2}=\frac{(2 x+1)(x-3)}{(x-2)(x+1)(x-1)}$

Domain: $x \neq 2,-1,1$
viA. $x=2, x=-1, x=1$
HA. $y=0$
x-int $\left(-\frac{1}{2}, 0\right),(3,0)$
y-int $\left(0,-\frac{3}{2}\right)$
no holes
extra points: $\left(-2,-\frac{5}{4}\right)\left(-3,-\frac{3}{4}\right)\left(-4, \frac{-49}{90}\right)$

$$
\begin{aligned}
& \left(\frac{1}{2},-4.4\right) \\
& (1.25,14.5)(1,5,9.6)(1.75,10.9) \\
& \left(4, \frac{3}{10}\right)\left(5, \frac{11}{36}\right)
\end{aligned}
$$

odd

But totally do-able.

If the degree of the numerator is exactly one more than the degree of the denominator, the graph of the function has a slant (or oblique) asymptote. To find the slant asymptote, divide and look for the quotient.

Examples: Find the slant asymptotes.

1. $f(x)=\frac{x^{2}+5}{x}=\frac{x^{2}}{x}+\frac{5}{x}=\frac{x}{\uparrow}+\frac{5}{x}$ h ignore remainder quotient $y=x$ is slant asymptote
2. $f(x)=\frac{x^{2}}{x-1}$

| | $\left.\begin{array}{ccc}x^{2} & x & \text { cost } \\ 1 & 0 & 0 \\ & 1 & 1 \\ \hline 1 & 1 & 1 \\ x & \text { cost } & R\end{array}\right]$ |
| :---: | :---: | :---: |

$$
y=x+1 \text { is slant asymptor }
$$

3. $f(x)=\frac{2 x^{2}-5 x+5}{x-2}$

$$
\begin{array}{cccc}
2 & 2 & -5 & 5 \\
& 4 & -2 \\
\hline 2 & -1 & 3
\end{array}
$$

$y=2 x-1$ is slant asymptote
always an equation not an expression.
That is, $y=2 x-1$ is a slant asymptote, $2 x-1$ is not!

