2.6 Rational Functions

Informal Definition of a Rational Function – A rational function is a quotient of polynomial functions. It can be written in the form $f(x) = \frac{N(x)}{D(x)}$ where N(x) and D(x) are polynomials and D(x) is not the zero polynomial.

Domain of a Rational Function – In general, the domain of a rational function includes all real numbers except those that make the denominator zero.

Definitions of Vertical and Horizontal Asymptotes -

1. The line x = a is a vertical asymptote of the graph of f if $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a$, either from the right or from the left.

2. The line y = b is a horizontal asymptote of the graph of f if $f(x) \rightarrow b$ as $x \rightarrow \pm \infty$.

Vertical and Horizontal Asymptotes of a Rational Function – Let f be the rational function given by

$$f(x) = \frac{N(x)}{D(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

where N(x) and D(x) have no common factors.

1. The graph of f has vertical asymptotes at the zeros of D(x).

2. The graph of f has one or no horizontal asymptote determined by comparing the degrees of N(x) and D(x).

a) If n < m, the graph of f has the line y = 0 (the x-axis) as a horizontal asymptote.

b) If n = m, the graph of f has the line $y = \frac{a_n}{b_m}$ as a horizontal asymptote.

c) If n > m, the graph of f has no horizontal asymptote.

Examples: Find the domain of the rational functions then identify any vertical and horizontal asymptotes.

1.
$$f(x) = \frac{4}{(x-2)^3}$$
 domain: $(x-2)^3 \neq 0$ V.A. $X=2$ H.A. $Y=0$,
 $x-2 \neq 0$ Closely denome has a
 $x \neq 2$ related larger degree.
to domain

2.
$$f(x) = \frac{3-7x}{3+2x}$$

Domain: $3+2x \neq D$ V.A. $X = -\frac{3}{2}$
 $2x \neq -3$
 $x \neq -\frac{3}{2}$
H.A. $y = -\frac{7}{2}$
degree of denome degree of num.

3.
$$f(x) = \frac{4x^2}{x+2}$$

Domain: $x+2 \neq 0$
 $x \neq -2$
 $x = -2$

Guidelines for Analyzing Graphs of Rational Functions – Let $f(x) = \frac{N(x)}{D(x)}$, where N(x) and D(x) are

polynomials.

1. Simplify *f*, if possible.

2. Find and plot the y-intercept (if any) by evaluating f(0).

3. Find the zeros of the numerator (if any) by solving the equation N(x) = 0. Then plot the corresponding *x*-intercepts.

4. Find the zeros of the denominator (if any) by solving the equation D(x) = 0. Then sketch the corresponding vertical asymptotes.

5. Find and sketch the horizontal asymptote (if any) by using the rule for finding the horizontal asymptote of a rational function.

6. Plot at least one point between and one point beyond each *x*-intercept and vertical asymptote.

7. Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Examples: Sketch the graph of the rational functions.

1.
$$f(x) = \frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1}$$
 if we
Domain: $x \neq -1, l$
hole at $x = -1$
vert. asymptote $x = l$
 $x = 1$ to $x = 1$ to $x = 1$
 $y = 1$ there expt $(0, -1)$
horizontal asymptote $y = D$
(1.5, z) Basic rational graph
 $(2, 1)$

2.
$$f(x) = \frac{x^2 - 4}{x^2 - 3x + 2} = \frac{(k+2)(x-2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$$

Danoin: $x \neq 2, 1$
Note at $x = 2$
Vert, any $x = 1$
 $x = 1$ at $y = -\frac{4}{1} = -2$ $(0, -2)$
 $y = 1$ at $y = -\frac{4}{1} = -2$ $(0, -2)$
 $y = 1$ at $y = -\frac{4}{1} = -2$ $(0, -2)$
 $y = 1$ at $y = -\frac{4}{1} = -2$ $(0, -2)$
 $y = 1$ basic retrional
graph
3. $f(x) = \frac{1}{x-3}$
 $y = 1$ $(3, 2.5)$
 $x = 3$
 $y = 1$ $(0, -\frac{1}{3})$
 $y = 1$ $(1, -\frac{1}{2})(2, -1)$
 $(4, 1)(5, \frac{1}{2})(6, \frac{1}{3})$
Note: The graph of $f(x) = \frac{1}{x-3}$ is just the graph
of $y = \frac{1}{x}$ shifted right 3 units.

4.
$$f(x) = \frac{1-2x}{x}$$
 points $(-1, -3) (-2, -2.5)$
Domain'. $X \neq D$
V.N. $X=0$
No holes
 $X = 1x + 1-2x=D$
 $X = \frac{1}{x} (\frac{1}{2}, 5)$
No $y = -\frac{1}{7}$ or $y = -2$
 $y = -2$
 $x = 0$
 $y = -2$

5.
$$f(x) = \frac{2x^2 - 5x - 3}{x^3 - 2x^2 - x + 2} = \frac{(2x + 1)(x - 3)}{(x - 2)(x + 1)(x - 1)}$$

bomain: $X \neq 2, -1, 1$
N.A. $X = 2, x = -1, x = 1$
H.A. $y = 0$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-3, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-\frac{1}{2}, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-\frac{1}{2}, 0), (-\frac{1}{2}, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-\frac{1}{2}, 0), (-\frac{1}{2}, 0)$
 $\chi - 1, n \neq (-\frac{1}{2}, 0), (-\frac{1}{2}, 0),$

If the degree of the numerator is exactly one more than the degree of the denominator, the graph of the function has a slant (or oblique) asymptote. To find the slant asymptote, divide and look for the quotient.

Examples: Find the slant asymptotes.

1.
$$f(x) = \frac{x^2 + 5}{x} = \frac{x}{x} + \frac{5}{x} = x + \frac{5}{x}$$
 ignore remainder
quotient y=x is slant asymptote

3.
$$f(x) = \frac{2x^2 - 5x + 5}{x - 2}$$

$$2 \quad 2 \quad -5 \quad 5$$

$$\frac{4 \quad -2}{2 \quad -1 \quad 3}$$

$$y = 2x - 1 \quad 1s \quad s \text{ lant asymptote}$$
always an equation not an expression.
That is, $y = 2x - 1 \quad is \quad a \quad s \text{ lant asymptote}, \quad 2x - 1 \quad is \quad ns + 1.$