Chapter Three: Exponential and Logarithmic Functions

3.1 Exponential Functions and Their Graphs

Definition of Exponential Function - The exponential function f with base ' a ' is denoted by $f(x)=a^{x}$ where $a>0, a \neq 1$, and x is any real number.

```
domain
```

Fact: The graph of $f(x)=a^{x}$ has one of two basic forms. If $0<a<1$, the graph is decreasing and if $a>1$, the graph is increasing. It has y -intercept $(0,1)$ and is a 1-1 monotonic function. The domain is all real numbers and the range is all $y>0$. For $0<a<1$, we frequently think of a horizontal rotation and refer to it as $f(x)=a^{-x}, a>1$.

Knowing the basic shape, we can now transform the graph using the concepts from chapter 1.

Examples: Graph the function. Label at least three points with exact values.

1. $f(x)=6^{x}$

x	y
-1	$6^{-1}=\frac{1}{6}$
0	$6^{0}=1$
1	$b^{\prime}=6$

2. | $g(x)=\left(\frac{1}{2}\right)^{-x}$ | $=2^{x}$ |
| ---: | :--- |
| x | y |
| -1 | $(1 / 2)^{-(-1)}=(1 / 2)^{\prime}=\frac{1}{2}$ |
| 0 | $(1 / 2)^{-(0)}=1$ |
| 1 | $(1 / 2)^{-(1)}=\frac{2}{1}=2$ |

3. $h(x)=4^{x-3}+3$ Kew horizontal

The vial moue

$$
\begin{array}{l|l}
x & y \\
\hline 2 & 4^{2-3}+3=4^{-1}+3=\frac{1}{4}+3=3.25 \\
3 & 4^{3-3}+3=4^{0}+3=1+3=4 \\
4 & 4^{4-3}+3=4^{1}+3=7 \\
0 & 4^{0-3}+3=4^{-3}+3=\frac{1}{64}+3=3.015225
\end{array}
$$

Examples: Use the graph of f to describe the transformation that yields the graph of g.

1. $f(x)=3^{x}, g(x)=3^{x}+1$
graph of
$f(x)$ shifted

$$
\text { op } 1 \text { unit }
$$

2. $f(x)=10^{x}, g(x)=10^{-x+3}=10^{-(x-3)}$
graph of $f(x)$
reflected a bout y-axis (horiz)
and shifted right 3 units
Notice the simplification required before determining left or right.

Many times, the best base to use is the irrational number $e \approx 2.718281828 . . .$. . This number is called the natural base (because it is natural for mathematicians and scientists to use it). The function given by $f(x)=e^{x}$ is called the natural exponential function. When working with the natural base, do NOT use the decimal approximation; always use the value of e stored in your scientific calculator. Notice that since $e>1$, we know what its graph will look like. The number e is named after the mathematician Leonard Euler.

Formulas for Compound Interest - After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

$$
\begin{array}{cl}
\text { 1. For } n \text { compoundings per year: } A=P\left(1+\frac{r}{n}\right)^{n t}
\end{array} \rightarrow \begin{aligned}
& \text { monthly, } n=12 \\
& \text { weekly, } n=52 \\
& \text { 2. For continuous compounding: } A=P e^{r t} \\
& \text { annually, } n=1 \\
& \text { daily, } n=365
\end{aligned} \quad \begin{aligned}
& \text { quarterly, } n=4 \\
& \text { This formula comes }
\end{aligned}
$$

$$
\begin{aligned}
& \text { This formula comes } \\
& \text { from letting } n \text { get really } \\
& \text { large in formula } 1 \text {. }
\end{aligned}
$$

Examples: Complete the table to determine the balance A for $\$ 2500$ invested at 4% and compounded n times per year for 20 years.

n		1	2	4	12	365	Continuous
A	$\$$	5477.81	5520.10	5541.79	5556.46	5563.61	5563.85

$A=2500 e^{(.04 \times 20)}$

Example: The number V of computers infected by a computer virus increases according to the model $V(t)=100 e^{4.6052 t}$, where t is the time in hours. Find the number of computers infected after (a) 1 hour, (b) 1.5 hours, and (c) 2 hours.

$$
\begin{aligned}
& V(1)=100 e^{(4.6052(1))}=10,000 \\
& V(1.5)=100 e^{(4.6052(1,5))}=100,004 \\
& V(2)=100 e^{(4.6052(2))}=1,000,060 \text { sanded }
\end{aligned}
$$

That's some serious granth!.

