Chapter Three: Exponential and Logarithmic Functions

3.1 Exponential Functions and Their Graphs

Definition of Exponential Function – The exponential function f with base 'a' is denoted by $f(x) = a^x$ where $a > 0, a \neq 1$, and x is any real number.

domain

Fact: The graph of $f(x) = a^x$ has one of two basic forms. If 0 < a < 1, the graph is decreasing and if a > 1, the graph is increasing. It has y-intercept (0, 1) and is a 1-1 monotonic function. The domain is all real numbers and the range is all y > 0. For 0 < a < 1, we frequently think of a horizontal rotation and refer to it as $f(x) = a^{-x}$, a > 1.

Knowing the basic shape, we can now transform the graph using the concepts from chapter 1.

Examples: Graph the function. Label at least three points with exact values.

Examples: Use the graph of *f* to describe the transformation that yields the graph of *g*.

1. $f(x) = 3^x$, $g(x) = 3^x + 1$ graph of fixs shifted y I wit

2.
$$f(x) = 10^x$$
, $g(x) = 10^{-x+3} = 10^{-(x-3)}$
graph of $f(x)$
reflected about y -axe (horiz)
and shifted right 3 units
Abotice the simplification
required before determining
left or right.

Many times, the best base to use is the irrational number $e \approx 2.718281828...$. This number is called the natural base (because it is natural for mathematicians and scientists to use it). The function given by $f(x) = e^x$ is called the natural exponential function. When working with the natural base, do NOT use the decimal approximation; always use the value of *e* stored in your scientific calculator. Notice that since e > 1, we know what its graph will look like.

The number e is named after the mathematician Leonard Euler.

Formulas for Compound Interest – After *t* years, the balance *A* in an account with principal *P* and annual interest rate *r* (in decimal form) is given by the following formulas.

1. For n compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$ \longrightarrow monthly, n = 12 weekly, n = 522. For continuous compounding: $A = Pe^{rt}$ This formula comes from letting n get scally large in formula 1.

Examples: Complete the table to determine the balance *A* for \$2500 invested at 4% and compounded *n* times per year for 20 years.

n	1	2	4	12	365	Continuous
А	\$ 5477.81	5520.10	5541,79	555.46	5563.61	5563.85

A = 2500 e (.04x20)

Example: The number V of computers infected by a computer virus increases according to the model $V(t) = 100e^{4.6052t}$, where t is the time in hours. Find the number of computers infected after (a) 1 hour, (b) 1.5 hours, and (c) 2 hours.

$$V(1) = 100 e^{(4.6052(1))} = 10,000$$

$$V(1.5) = 100 e^{(4.6052(1.5))} = 100,004$$

$$V(2) = 100 e^{(4.6052(2))} = 1,000,060 \text{ randed}$$

That's some serious granth!