3.2 Logarithmic Functions and Their Graphs

Definition of Logarithmic Function with Base $a-\operatorname{For} x>0, a>0$, and $a \neq 1, y=\log _{a} x$ if and only if $x=a^{y}$. The function given by $f(x)=\log _{a} x$ is called the logarithmic function with base a. all a logarithm is, is an exponent.

Examples: Write in exponential form.

1. $\log _{7} 343=3 \quad \log$ base 7, exponential base 7, the \log is the exponent ($\log =3$)

$$
\begin{aligned}
& 7^{3}=343 \text { is the power you raise } 7 \text { to } \\
& \text { in order to get } 343
\end{aligned}
$$

2. $\log _{16} 8=\frac{3}{4}$
base of \log is base of exponential
log is the exponent

to get 8
3. $\log \frac{1}{1000}=-3$
base unwritten is assumed to be 10

4. $\log _{8} 4=\frac{2}{3}$
base is 8

$\log _{\text {is }} 2 / 3$ (exponent)
to get 4
5. You try it: $\log _{5} \frac{1}{25}=-2$

Examples: Write in logarithmic form.

1. $13^{2}=169$
base of \log is base of exponential \log equals exponent to get 169
2. $9^{3 / 2}=27$
base is 9
exponent is $3 / 2$ (log) to get 27

$$
\frac{3}{2}=\log _{9} 27
$$

3. $4^{-3}=\frac{1}{64}$
base is 4 , exponent is -3 , to get $\frac{1}{64}: \quad-3=\log _{4} \frac{1}{64}$
4. You try it: $10^{-3}=0.001$

Properties of Logarithms:

1. $\log _{a} 1=0$ because $a^{0}=1$
2. $\log _{a} a=1$ because $a^{1}=a$
3. $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x$
4. If $\log _{a} x=\log _{a} y$, then $x=y$.

Examples: Simplify

1. $\log _{3.2} 1$
prop 1

$$
=0
$$

anything other than D raised to 0 power is 1
2. $9^{\log _{9} 15}$
prop 3

$$
=15
$$

inverse property
3. $\log _{\pi} \pi$
prop 2
$=1$

$$
\pi^{\prime}=\pi
$$

4. $\log _{11} 11^{7}$

$$
\begin{gathered}
\text { prop } 3 \\
=7
\end{gathered}
$$

Inverse property

Fact: The graph of the logarithmic function is the inverse of the graph of the exponential function. This means that the x-intercept is $(1,0)$, the domain is $x>0$ and the range is all real numbers. (Recall the inverse switches x and y, domain and range.) Using this basic knowledge we can move the log graph all over the coordinate system.

Domain $(-\infty, \infty)$
Range $(0, \infty)$

Domain $(0, \infty)$ Range $(-\infty, \infty)$

Definition of the Natural Logarithmic Function - The function defined by $f(x)=\log _{e} x=\ln x, x>0$ is called the natural logarithmic function.
not: this is not $I_{n}(x)$ it is $\operatorname{Ln} x$, even though laver case i's look like i's to some people, please use common sense!

Fact: All the properties of logarithms still hold with base e.

Examples: Use the one-to-one property to solve the equation.

1. $\log _{5}(x+1)=\log _{5} 6$

The bases are equal
so $x+1=6$
and $x=5$
2. $\ln \left(x^{2}-x\right)=\ln 6$

The bases are equal
So $x^{2}-x=6$

$$
\begin{aligned}
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3-0 \text { or } x+2=0 \\
& x=3 \text { or } x=-2
\end{aligned}
$$

Domain of a logarithm in general is $x>0$, but we must consider each function separately. Substituting -2 here is just fine.

Example: Students in a mathematics class were given an exam and then retested monthly with an equivalent exam. The average scores for the class are given by the human memory model $f(t)=80-17 \log (t+1), 0 \leq t \leq 12$ where t is the time in months.
a) Sketch a basic graph of the function.

b) What was the average score on the original exam $(t=0)$?

Solution: The average on the original exam was

$$
f(0)=80-17 \log (0+1)=80-17 \log (1)=80-17(0)=80
$$

c) What was the average score after month 4 ?

Solution: After month 4 we would use $t=4$ to get

$$
f(4)=80-17 \log (4+1)=80-17 \log 5 \approx 68.1
$$

d) What was the average score after month 10 ?

Solution: After month 10 we would use $t=10$ to get

$$
f(10)=80=17 \log (10+1)=80-17 \log 11 \approx 62.3
$$

