4.4 Trigonometric Functions of Any Angle

Definition of Trig Functions of Any Angle – Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}, \ x \neq 0$$
$$\csc \theta = \frac{r}{y}, \ y \neq 0 \ \sec \theta = \frac{r}{x}, \ x \neq 0 \ \cot \theta = \frac{x}{y}, \ y \neq 0$$

Examples: The point is on the terminal side of an angle in standard position. Determine the exact values of the six trigonometric functions of the angle.

$$\frac{1.(8,15)}{5} + \frac{1}{5} = \frac{1}{6} + \frac{1}{5} + \frac{1}{5}$$

2. (-4, 10)

$$\begin{pmatrix} -4/10 \\ 10 \\ -4 \\ -4 \end{pmatrix}$$
 $r^{2} = (-4)^{2} + 10^{2}$
 $r^{2} = (-4)^{2} + 10^{2}$
 $r^{2} = 16 + 100$
 $r^{2} = 16 + 100$
 $r^{2} = 116$
 $r^{2} = 100$
 $r^{2} = -\frac{10}{2}$
 $r^{2} = -\frac{10}{2}$
 $r^{2} = -\frac{10}{2}$

Examples: State the quadrant in which θ lies.

2. $\sin\theta > 0$ and $\cos\theta < 0$

Example: Find the values of the six trig functions of $\boldsymbol{\theta}$ with the given constraint.

1.
$$\cos\theta = \frac{8}{17}$$
 with $\tan\theta < 0$ [] $\tan\theta < 0$ when $x \downarrow y$ have opposite signs $GH \neq \frac{1}{12}$
(2) $\frac{8}{17}$ ($\frac{1}{2} + \frac{1}{2} = 17^{1}$ ($\frac{3}{3} - \frac{15}{17}$ ($5L\theta = -\frac{17}{15}$
 $\frac{1}{17}$ ($\frac{1}{2} + \frac{1}{2} = 17^{1}$ ($\frac{3}{2} - \frac{15}{17}$ ($\frac{5L\theta}{17} = -\frac{17}{15}$
 $\frac{1}{17}$ ($\frac{1}{2} + \frac{1}{2} = 289$ ($\theta = \frac{8}{17}$ $Sec\theta = \frac{11}{8}$
 $\frac{1}{3} - \frac{15}{15}$ ($\theta + \theta = -\frac{8}{15}$
 $\frac{1}{3} - \frac{15}{15}$ ($\theta + \theta = -\frac{8}{15}$

2.
$$\sec\theta = -2 \ with \sin\theta < 0$$

Sind LD in qualitants the the
Sel
$$\theta$$
 to be are negative in $\mathbb{R} + \mathbb{R}$
Use qualitant \mathbb{R}
 y
 $\frac{1}{2}$
 $\frac{$

Definition of Reference Angle – Let θ be an angle in standard position. Its reference angle is the acute Definition of Reference Angle Let θ and the horizontal axis. angle θ' formed by the terminal side of θ and the horizontal axis. aka: the χ -axis

1

Examples: Find the reference angle and sketch both angles.

- 1. $\theta = 309^{\circ}$ 309° 15 bigger than 270°, less than 360° 50 in QTV In QTV $309 + \theta' = 360$ so $\theta' = 360 - 309 = 51^{\circ}$
- 2. -215° -215 is more than -180, less than -270 so in QIIa coterminal angle is $360^{\circ}-215^{\circ}=145^{\circ}$ in QII 145° + $\theta'=180^{\circ}$ so $\theta'=180-145=35^{\circ}$

369

51°

3.
$$\theta = \frac{7\pi}{6}$$

 $\frac{7\pi}{6}$
 $\frac{7\pi}{6}$ is $\frac{7}{6} \circ f \pi$. $\frac{7}{6}$ is more than 1, less than $\frac{3}{2}$ so Q III
 $\pi/6$
In Q3: $\frac{11}{6} - \pi = \frac{7\pi}{6} - \frac{6\pi}{6} = \frac{\pi}{6}$

4.
$$\theta = 11.6$$

no degree symbol so this is in radians
 $\pi = 5.14$, $2\pi = 4.18$, $3\pi = 9.42$, $4\pi = 12.52$ \rightarrow somewhere between $3\pi + 4\pi$
 $3.5\pi = 10.99$
 $3\pi = \pi$ Now that we know the quadrant, let's find a
Coterminal angle in the interval $[0, 2\pi]$: $[1.6-2\pi = 5.32$
in $\theta \pi : 2\pi - 5.32 = 0.96$ So $\theta' = 0.96$ rad

Evaluating Trigonometric Functions of Any Angle – To find the value of a trigonometric function of any angle θ :

- 1. Determine the function value for the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

Know signs (tor-) and reference angles Jo you only need to remember 1^{SI} quadrant of unit circle

Examples: Find two solutions of the equation. Give your answers in degrees and radians.

1.
$$\sin \theta = \frac{1}{2}$$

SIND 15 positive in
QI+IT
SIND = $\frac{1}{2}$ (reference)
 30° in Qualrant I is (30°) in radians $\begin{bmatrix} \frac{11}{16}\\ 6\\ \frac{5\pi}{16}\\ \frac{5\pi}{16}\\ \frac{5\pi}{16}\\ \frac{7}{16}\\ \frac{7}{16}\\$

2.
$$\csc \theta = \frac{2\sqrt{3}}{3}$$

 $\csc \theta = \frac{2}{\sqrt{3}}$
 $\csc \theta = \frac{2}{\sqrt{3}}$
 $\csc \theta = \frac{2}{\sqrt{3}}$
 $\cos \theta = \frac{\sqrt{3}}{2}$
 $\beta = \frac{\sqrt{3}}{2}$

3.
$$\tan \theta = 1$$

 $\int \int \int \nabla \theta = 1$
 $\int \int \nabla \theta = 1$
 $\int \int \nabla \theta = 1$
 $\int \nabla \theta =$