4.5 Graphs of Sine and Cosine Functions

To graph the sine or cosine function by hand, you need to know the five key points for one period $[0,2 \pi]$. We can find these points by examining the unit circle and "unraveling" it into a linear graph.

Example: The development of $y=\sin x$ and $y=\cos x$.

sine is the y-values from the unit circle $(0 \operatorname{rad}, 0)(\pi / 2,1)(\pi, 0)\left(\frac{3 \pi}{2},-1\right)$ and $(2 \pi, 0)$

Cosine is the x-values from unit circle: $(0,1),(\pi / 2,0),(\pi,-1),\left(\frac{3 \pi}{2}, 0\right)$ and $(2 \pi, 1)$

there will be a quiz over these tum graphs!

Definition of Amplitude of Sine and Cosine Curves - The amplitude of $y=a \sin x$ and $y=a \cos x$ represents half the distance between the maximum and minimum values of the function and is given by Amplitude $=|a|$.
\downarrow so always positive
notice this is just a vertical stretch/shrink from chapter 1

Period of Sine and Cosine Functions - Let b be a positive real number. The period of $y=a \sin b x$ and $y=a \cos b x$ is given by Period $=\frac{2 \pi}{b}$.

Examples: Find the period and amplitude.

1. $y=-4 \sin x$
$A_{m p}=|-4|=4$
$a=-4$
$b=1$

Period $=\frac{2 \pi}{1}=2 \pi$
2. $\begin{aligned} y=-\cos \frac{2 x}{3} \quad \begin{array}{l}a=-1 \\ b\end{array}=2 / 3\end{aligned}$
$A_{m p}=|-1|=1$
Period $=\frac{2 \pi}{\frac{2}{6}}=2 \pi \cdot \frac{3}{2}=3 \pi$
4. $y=\frac{1}{4} \sin 2 \pi x$

$$
a=\frac{1}{4} \quad b=2 \pi
$$

$$
A_{m p}=\left|\frac{1}{4}\right|=\frac{1}{4}
$$

$$
\text { Period }=\frac{2 \pi}{2 \pi}=1
$$

Graphs of Sine and Cosine Functions - The graphs of $y=a \sin (b x-c)$ and $y=a \cos (b x-c)$ have the following characteristics. (Assume $b>0$.)
a. \quad Amplitude $=|a|$
b. Period $=\frac{2 \pi}{b}$.
c. The left endpoint of a one-cycle interval can be determined by solving the equation $b x-c=0$.
d. The right endpoint of a one-cycle interval can be determined by solving the equation $b x-c=2 \pi$.
e. The number c / b is the phase shift.

Examples: Sketch the graph of the function.

1. $y=4 \sin x \quad$ Amp $=4$ Period $=\frac{2 \pi}{1}=2 \pi \quad$ the height is the only change

2. $y=\sin 4 x \quad A_{m p}=1 \quad$ Period $=\frac{2 \pi}{4}=\frac{\pi}{2} \quad$ (horizontal Shrink by a factor of 4)

Same basic graph, all that Changes are the scaling of the axes.
3. $y=-10 \cos \frac{\pi x}{6}$
vert reflection
Amp $=|-10|=10$
period $=\frac{2 \pi}{\frac{\pi}{6}}=2 \pi \cdot \frac{6}{\pi}=12$

remember, this is taken from a circle so it should have curves, not lines.

phase shift $x+\frac{\pi}{4}=0$

$$
x=-\frac{\pi}{4}
$$

Start at
$-\pi / 4$
to find x-values for graph we solve mini-equations.

$$
\begin{array}{ccccc}
x+\frac{\pi}{4}=0 & x+\frac{\pi}{4}=\frac{\pi}{2} & x+\frac{\pi}{4}=\pi & x+\frac{\pi}{4}=\frac{3 \pi}{2} & x+\frac{\pi}{4}=2 \pi \\
x=-\frac{\pi}{4} & x=\frac{\pi}{4} & x=\frac{3 \pi}{4} & x=\frac{5 \pi}{4} & x=\frac{7 \pi}{4}
\end{array}
$$

L equal to regular x-value of normal cosine graph.
to find y-values, go up or dawn 4 from midline of $y=2$.

Examples: Describe the sequence of transformations from the parent functions.

1. $g(x)=\sin (2 x+\pi)$
horizontal shrink
by afactor of 2 :

$$
\text { period }=\frac{2 \pi}{2}=\pi
$$

2. $g(x)=1+\cos (x+\pi)$

3. $g(x)=4-\sin (3 x-\pi)$

horizontal shrink by period $=\frac{2 \pi}{3}$
phase shift $3 x-\pi=0$

$$
\begin{array}{r}
3 x=\pi \\
x=\pi / 3
\end{array}
$$

$$
(\text { right } \pi / 3)
$$

Examples: When tuning a piano, a technician strikes a tuning fork for the A above middle C and sets up a wave motion that can be approximated by $y=0.001 \sin 880 \pi t$, where t is the time (in seconds).
(a) What is the period of the function?

$$
\text { Period }=\frac{2 \pi}{880 \pi}=\frac{1}{440}
$$

(b) The frequency f is given by $f=1 / p$. What is the frequency of the note?

$$
f=\frac{1}{p}=\frac{1}{\frac{1}{440}}=1 \cdot \frac{440}{1}=440 \mathrm{~Hz}
$$

Examples: A Ferris wheel is built such that the height h (in feet) above ground of a seat on the wheel at time t (in seconds) can be modeled by $h(t)=53+50 \sin \left(\frac{\pi}{10} t-\frac{\pi}{2}\right)$.
(a) Find the period of the model. What does the period tell you about the ride?

$$
\begin{array}{ll}
\text { period }=\frac{2 \pi}{b} \text { where } b=\frac{\pi}{10} & \text { It takes } 20 \text { seconds } \\
p=\frac{2 \pi}{\frac{\pi}{10}}=2 \pi \cdot \frac{10}{\pi}=20 & \text { Once around this ride. }
\end{array}
$$

(b) Find the amplitude of the model. What does the amplitude tell you about the ride?

$$
\begin{aligned}
A_{\mathrm{mp}}=|50|=50 \mathrm{ft} . & \text { From the centerline of } 53 \mathrm{ft}, \\
& \text { this ride reaches a max height of } \\
& 103 \mathrm{ft} \text { and a minimum height of } 3 \mathrm{ft} .
\end{aligned}
$$

