4.8 Applications and Models

Examples: Solve the right triangle with angles A, B, and C with corresponding sides a, b, and c. Round B

your answers to two decimal places. (C is the right angle.)

1.
$$B = 54^{\circ}$$
, $c = 15$

$$S_{11}54^{0} = \frac{b}{15}$$
 So $b = 15S_{11}54^{0} \approx 12.14 = b$
 $C_{05}54^{0} = \frac{a}{15}$ So $a = 15C_{05}54^{0} \approx 8.82 = a$
 $A + B + C = 180^{6} \Rightarrow A + 54^{0} + 90^{6} = 180 \Rightarrow A = 36^{0}$

$$COSSY'' = \frac{\alpha}{15}$$
 So $\alpha = 15 COSSY'' \approx 8.82 = 0$

2.
$$A = 8.4^{\circ}$$
 , $a = 40.5$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} = 40.5$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad B = 81.6^{\circ}$$

$$A + B + C = 18D = 7 \quad 8.4^{\circ} + B + 90^{\circ} = 180^{\circ} = 7 \quad 8.4^{\circ} = 7 \quad$$

3.
$$a = 25, c = 35$$

25

b

A

$$a^{2} + b^{2} = c^{2} \quad \text{So} \quad 25^{2} + b^{2} = 35^{2} =) \quad b^{2} = 35^{2} - 25^{2}$$

$$b^{3} = 600 \Rightarrow 24.46$$

$$SinA = \frac{25}{35} \quad \text{So} \quad A = \arcsin(\frac{25}{35}) = 45.58^{\circ}$$

$$Cosb = \frac{25}{35} \quad \text{So} \quad b = \arccos(\frac{25}{35}) = 44.42^{\circ}$$

Example: The sun is 20° above the horizon. Find the length of a shadow cast by a park statue that is 12 feet tall.

Example: A ladder 20 feet long leans against the side of a house. Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80° .

$$51n80^{\circ} = \frac{h}{20}$$
 $2051n80^{\circ} = h$
 $h = 19.696155$
 $h = 19.7 ft$

Example: A passenger in an airplane at an altitude of 10 km sees two towns directly to the east of the plane. The angles of depression to the town are 28° and 55° . How far apart are the towns?

To solve this,
we need to find X.

To find X, we find
y, then find X+y and
then subtract to

B get X

$$tan 62^{\circ} = \frac{x+y}{10}$$
 $10tan 62^{\circ} = x+y = 18.81$
 $X = 18.81-7 = 11.81 \text{ Km}$
 $capart$

Example: A ship leaves port at noon and has a bearing of S 29° W. The ship sails at 20 knots.

(a) How many nautical miles south and how many nautical miles west will the ship have traveled by 6:00 PM?

(b) At 6:00 PM, the ship changes course to due west. Find the ship's bearing and distance from the port of departure at 7:00 PM.

a) At 6 pm the ship has sailed
$$6(10) = 120$$
 nm $81n29^{\circ} = \frac{\omega}{120}$ so west = $120 \sin 29^{\circ}$ west = 78.18 nm $\cos 29^{\circ} = \frac{300 + h}{120}$ so $\sinh = 120 \cos 29^{\circ}$ south = 104.95 nm