4.8 Applications and Models

Examples: Solve the right triangle with angles A, B, and C with corresponding sides a, b, and c. Round your answers to two decimal places. (C is the right angle.)

1. $B=54^{\circ}, c=15$

$$
\sin 54^{\circ}=\frac{b}{15} \text { so } b=15 \sin 54^{\circ} \approx 12.14=b
$$

$$
\cos 54^{\circ}=\frac{a}{15} \text { so } a=15 \cos 54^{\circ} \approx 8.82=a
$$

$$
A+B+C=180^{\circ} \Rightarrow A+54^{\circ}+90^{\circ}=180 \Rightarrow A=36^{\circ}
$$

2. $A=8.4^{\circ}, a=40.5$

$$
\begin{aligned}
& A+B+C=180 \Rightarrow 8.4^{\circ}+B+90^{\circ}=180^{\circ} \Rightarrow B=81.6^{\circ} \\
& \tan 8.4^{\circ}=\frac{40.5}{b} \text { so } b \tan 8.4^{\circ}=40.5 \text { and } b=\frac{40.5}{\tan 8.4^{\circ}} \\
& \approx 274.27 \\
& \sin 8.4^{\circ}=\frac{40.5}{c} \\
& C \sin 8.4^{\circ}=40.5 \text { so } c=\frac{40.5}{\sin 8.4}=277.24
\end{aligned}
$$

3. $a=25, c=35$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \text { so } 25^{2}+b^{2}=35^{2} \Rightarrow b^{2}=35^{2}-25^{2} \\
& b^{2}=600 \Rightarrow 24.49 \\
& \sin A=\frac{25}{35} \text { so } A=\arcsin \left(\frac{25}{35}\right)=45.58^{\circ} \\
& \cos B=\frac{25}{35} \text { so } B=\arccos \left(\frac{25}{35}\right)=44.42^{\circ}
\end{aligned}
$$

Example: The sun is 20° above the horizon. Find the length of a shadow cast by a park statue that is 12 feet tall.

Example: A ladder 20 feet long leans against the side of a house. Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80°.

$$
\begin{aligned}
\sin 80^{\circ}= & \frac{h}{20} \\
20 \sin 80^{\circ}= & h \\
h & =19.696155 \\
h & =19.7 \mathrm{ft}
\end{aligned}
$$

Example: A passenger in an airplane at an altitude of 10 km sees two towns directly to the east of the plane. The angles of depression to the town are 28° and 55°. How far apart are the towns?

To solve this, we need to find x. To find x, we find y, then find $x+y$ and then subtract to get x

$$
\begin{gathered}
\tan 62^{\circ}=\frac{x+y}{10} \\
10 \tan 62^{\circ}=x+y=18.81 \\
x=18.81-7=\begin{array}{c}
11.81 \mathrm{~km} \\
\text { apart }
\end{array}
\end{gathered}
$$

Example: A ship leaves port at noon and has a bearing of $\mathrm{S} 29^{\circ} \mathrm{W}$. The ship sails at 20 knots.
(a) How many nautical miles south and how many nautical miles west will the ship have traveled by 6:00 PM?
(b) At 6:00 PM, the ship changes course to due west. Find the ship's bearing and distance from the port of departure at 7:00 PM.

a) At 6 pm the ship has sailed $6(2 D)=120 \mathrm{~nm}$
$\sin 29^{\circ}=\frac{\omega}{120}$ so west $=120 \sin 29^{\circ}$ west $=58.18 \mathrm{~nm}$

$$
\begin{aligned}
\cos 29^{\circ}=\frac{\text { south }}{120} \text { so south } & =120 \cos 29^{\circ} \\
\text { south } & =104.95 \mathrm{~nm}
\end{aligned}
$$

$$
\tan \theta=\frac{20+58.18}{104.95}
$$

$$
\theta=\arctan \left(\frac{78.18}{104.95}\right)=36.7^{\circ} \leftarrow \frac{\text { not our }}{\text { final answer! }}
$$

$S 36.7^{\circ} \mathrm{W}$
must be in the form of a bearing

