Chapter Seven: Systems of Equations and Inequalities

7.1 Linear and Nonlinear Systems of Equations

Definition: A system of equations consists of two or more equations considered together. The solution to a system is the single point that is a solution to every equation in the system. Sometimes there is no solution, when they do not share a common point, and other times the lines may be the same and therefore every point is a solution.

We have two general ways of solving systems: substitution and elimination.

Substitution Method:

1. Solve one of the equations for one variable in terms of the other.
2. Substitute the expression found in step 1 into the other equation to obtain an equation in one variable.
3. Solve the equation obtained in step 2.
4. Back-substitute the value obtained in step 3 into the expression obtained in step 1 to find the value of the other variable.
5. Check that the solution satisfies each of the original equations.

Examples: Solve by substitution.

1. $\left\{\begin{array}{l}x+4 y=3 \\ 2 x-7 y=-24\end{array}\right.$

$$
\begin{array}{cc}
\begin{array}{c}
\text { (1) Solve eq } 1 \text { for } x: \\
x+4 y=3
\end{array} & \begin{array}{l}
\text { (2) Substitute: } \\
2(3-4 y)-7 y=-24 \\
x=3-4 y
\end{array} \\
& \text { (3) Solve } \\
6-8 y-7 y=-24
\end{array} \quad \begin{gathered}
6-15 y=-24 \\
-15 y=-30 \\
y=2
\end{gathered} \quad \begin{array}{r}
\text { Solution: } \\
(-5,2)
\end{array}
$$

2. $\left\{\begin{array}{l}6 x-3 y-4=0 \\ x+2 y-4=0\end{array}\right.$
(1) Solve eq 2 for x : (3) Solve

$$
x=4-2 y
$$

(2) Substitute

$6(4-2 y)-3 y-4=0$
$24-12 y-3 y-4=0$
$20-15 y=0$
$20=15 y$
$\frac{20}{15}=y=\frac{4}{3}$
(4) Back -sub

$$
x=4-2\left(\frac{4}{3}\right)=4-\frac{8}{3}
$$

$$
=\frac{4}{1} \cdot \frac{3}{3}-\frac{8}{3}
$$

$$
=\frac{12}{3}-\frac{8}{3}=\frac{4}{3}
$$

3. $\left\{\begin{array}{l}x-2 y=0 \\ 3 x-y^{2}=0\end{array}\right.$
(1) $x=2 y$
(2) $3(2 y)-y^{2}=0$
(3)

$$
\begin{aligned}
& 6 y-y^{2}=0 \\
& y(6-y)=0 \\
& y=0 \text { or } 6=y
\end{aligned}
$$

4. $\left\{\begin{array}{l}x-y-1=0 \\ x^{2}+y^{2}-4 x=0\end{array}\right.$
(1)

$$
x-1=y
$$

(2)

$$
x^{2}+(x-1)^{2}-4 x=0
$$

(3)

$$
x^{2}+(x-1)(x-1)-4 x=0
$$

$$
x^{2}+x^{2} x-x+1-4 x=0
$$

$$
2 x^{2}-6 x+1=0
$$

(4)
for $x=\frac{3+\sqrt{7}}{2}$

$$
\begin{gathered}
y=\frac{3+\sqrt{7}}{2}-1=\frac{1+\sqrt{7}}{2} \\
\left(\frac{3}{2}-1=\frac{1}{2}\right)
\end{gathered}
$$

for $x=\frac{3-\sqrt{7}}{2}$

$$
y=\frac{3-\sqrt{7}}{2}-1=\frac{1-\sqrt{7}}{2}
$$

Solutions:

$$
(0,0)
$$

$$
(12,6)
$$

$$
x=2(6)=12
$$

$$
\left\{\begin{array}{l}
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(2)(1)}}{2(2)} \\
x=\frac{6 \pm \sqrt{36-8}}{4} \\
x=\frac{6 \pm \sqrt{28}}{4},
\end{array}, \begin{array}{l}
x=\frac{6 \pm 2 \sqrt{7}}{4} \\
x=\frac{2(3 \pm \sqrt{7})}{2(2)} \\
x=\frac{3 \pm \sqrt{7}}{2} \\
\sqrt{28}=\sqrt{4 \cdot 7}=2 \sqrt{7}
\end{array}, \begin{array}{l}
x=\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}
\end{array}\right.
$$

Solutions:

$$
\begin{aligned}
& \left(\frac{3+\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right) \\
& \left(\frac{3-\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right)
\end{aligned}
$$

5. You try it: $\left\{\begin{array}{l}2 x+y=3 \\ 4 x-5 y=-2\end{array}\right.$

Example: A small software company invests $\$ 25,000$ to produce a software package that will sell for $\$ 69.95$. Each unit can be produced for $\$ 45.25$.

Coots 45.25 per unit $=45.25 x$
Revenue 69.95 per unit
Let x 25,000 fixed

$$
R(x)=69.95 x
$$

be number

$$
c(x)=45.25 x+25,000
$$

a) How many units must be sold to break even?

$$
R=C
$$

$$
\begin{aligned}
& 69.95 x=45.25 x+25,000 \\
& -45.25 x \quad-45.25 x
\end{aligned} \quad \lambda=\frac{25,000}{24.7}=1012.145 \ldots
$$

About 1012 units to break even.
b) How many units must be sold to make a profit of $\$ 100,000$?

$$
\begin{aligned}
& P(x)=69.95 x-(45.25 x+25,000) \\
& P(x)=69.95 x-45.25 x-25,000 \\
& P(x)=24.70 x-25,000 \\
& 100,000=24.7 x-25,000 \\
& 125,000=24.7 x
\end{aligned}
$$

$$
\frac{125,000}{24.7}=x \approx 5060.728 \ldots
$$

To make a profit of $\$ 100,000$, you would need to make and sell 5061 units.

Example: You are offered two jobs selling dental supplies. One company offers a straight commission of 6% of sales. The other company offers a salary of $\$ 500$ per week plus 3% of sales. How much would you have to sell in a week in order to make the straight commission offer better?

Straight commission $C C(x)=.06 x$ if $x=$ amount of sales

$$
\text { Salary }=S(x)=.03 x+500
$$

Straight commission better implies $C(x)>S(x)$

$$
\begin{gathered}
.06 x>.03 x+500 \\
\frac{.03 x-.03 x}{.03 x}>\frac{500}{.03} \\
x>16,466.67
\end{gathered}
$$

You must sell over $\$ 16,666.67 \mathrm{in}$ order for straight commission to be better.

