Chapter Seven: Systems of Equations and Inequalities

7.1 Linear and Nonlinear Systems of Equations

Definition: A system of equations consists of two or more equations considered together. The solution to a system is the single point that is a solution to every equation in the system. Sometimes there is no solution, when they do not share a common point, and other times the lines may be the same and therefore every point is a solution.

We have two general ways of solving systems: substitution and elimination.

Substitution Method:

1. Solve one of the equations for one variable in terms of the other.

2. Substitute the expression found in step 1 into the other equation to obtain an equation in one variable.

3. Solve the equation obtained in step 2.

4. Back-substitute the value obtained in step 3 into the expression obtained in step 1 to find the value of the other variable.

5. Check that the solution satisfies each of the original equations.

Examples: Solve by substitution.

1. $\begin{cases} x + 4y = 3 \\ 2x - 7y = -24 \end{cases}$ (D) Solve eq1 for x: x + 4y = 3 X = 3 - 4y	(2) So betitote: 2(3 - 4y) - 7y = -24 (3) Solve 6 - 8y - 7y = -24	6 - 15y = -24 - 15y = -30 y = 2 (1) Back substitut X = 3 - 4(2) = 3	Solution: (-5,2) = 3-8=-5
2. $\begin{cases} 6x - 3y - 4 = 0 \\ x + 2y - 4 = 0 \end{cases}$ (1) Solve eq2 for x.' x = 4 - 2y (2) Substitute 6(4 - 2y) - 3y - 4 = 0	 3 Solve 24-12y-3y-4=0 20-15y=0 20=15y 20=15y 20=5y 20=5y 20=5y 	(2) Back - Sub $X = 4 - 2(\frac{4}{3}) = \frac{1}{3}$ Subtriant $\left(\frac{4}{3}, \frac{4}{3}\right)$	$= \frac{4}{1} - \frac{8}{3} - \frac{8}{3}$ $= \frac{12}{3} - \frac{8}{3} = \frac{4}{3}$

3.
$$\begin{cases} x - 2y = 0 \\ 3x - y^{2} = 0 \end{cases}$$
(a)
$$x = 2y$$
(b)
$$x = 2y$$
(c)
$$x = 2(0) = 0$$
(c)
$$x = 2(0) = 0$$
(c)
$$x = 2(0) = 0$$
(c)
$$x = 2(0) = 12$$
(c)

4.
$$\begin{cases} x - y - 1 = 0 \\ x^{2} + y^{2} - 4x = 0 \end{cases}$$

$$X = \frac{-(-\zeta) + \sqrt{(-\zeta)^{2} - 4(2)(1)}}{2(2)}$$

$$X = \frac{-(-\zeta) + \sqrt{(-\zeta)^{2} - 4(2)(1)}{2(2)}$$

$$X = \frac{-(-\zeta) + \sqrt{(-\zeta)^{2} - 4(2)(1)}{2(2)}}$$

$$X = \frac{-(-\zeta) + \sqrt{($$

(a) for
$$x = \frac{3+\sqrt{7}}{2}$$
 for $x = \frac{3-\sqrt{7}}{2}$ Solutions:
 $y = \frac{3+\sqrt{7}}{2} - 1 = \frac{1+\sqrt{7}}{2}$ $y = \frac{3-\sqrt{7}}{2} - 1 = \frac{1-\sqrt{7}}{2}$ $\left(\frac{3+\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right)$
 $\left(\frac{3-\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right)$

5. You try it: $\begin{cases} 2x + y = 3\\ 4x - 5y = -2 \end{cases}$

Example: A small software company invests \$25,000 to produce a software package that will sell for \$69.95. Each unit can be produced for \$45.25. Beyenve 45.25 and 5.25 and 5.25 beyenve 45.25 beyenve 45.25 beyenve 45.25 beyenve 45.25 beyenve 45.25 beyenve 5.25 beyenve 45.25 beyenve 45.25 beyenve 5.25 beyenve 5

Revenue 69.95 per unit Let x 25,000 fixed R(x) = 69.95x be number C(x) = 45.25x + 25,000of units

a) How many units must be sold to break even? R = C $\begin{array}{c}
69.95 \times = 45.25 \times +25,000 \\
-45.25 \times & -45.25 \times \\
24.7 \times = 25,000 \end{array} \quad X = \frac{25,000}{24.7} = 1012.145...$ $\begin{array}{c}
About 1012 \\
a$

b) How many units must be sold to make a profit of \$100,000?

$$f(x) = 69.95x - (45.25x + 25,00)$$

 $f(x) = 69.95x - 45.25x - 25,000$
 $f(x) = 24.70x - 25,000$
 $100,000 = 24.7x - 25,000$
 $125,000 = 24.7x$
 $100,000 = 24.7x$
 $125,000 = 24.7$

Example: You are offered two jobs selling dental supplies. One company offers a straight commission of 6% of sales. The other company offers a salary of \$500 per week plus 3% of sales. How much would you have to sell in a week in order to make the straight commission offer better?

Straight Commission =
$$C(x) = .06x$$
 if $x = amount of sales$
Salary = $S(x) = .03x + 500$
Straight commission better implies $C(x) > S(x)$
 $.06x > .03x + 500$
 $-.03x - .03x$
 $\frac{.03x > .03x}{.05} > \frac{.03x}{.05}$
 $X > 16,666.67$ in order for
 $X > 16,666.67$ straight commission to be
better.