8.2 Operations with Matrices

Representation of Matrices -

1. A matrix can be denoted by any uppercase letter.
2. A matrix can be denoted by a representative element enclosed in brackets, such as $\left[a_{i j}\right]$.
3. A matrix can be denoted by a rectangular array of numbers.

Fact: Two matrices are equal if their corresponding entries are equal.

Examples: Find x and y.

1. $\left[\begin{array}{cc}-5 & x \\ y & 8\end{array}\right]=\left[\begin{array}{cc}-5 & 13 \\ 12 & 8\end{array}\right] \quad \begin{aligned} & x=13 \\ & y=12\end{aligned}$
2. $\left[\begin{array}{cccc}16 & 4 & 5 & 4 \\ -3 & 13 & 15 & 6 \\ 0 & 2 & 4 & 0\end{array}\right]=\left[\begin{array}{cccc}16 & 4 & 2 x+1 & 4 \\ -3 & 13 & 15 & 3 x \\ 0 & 2 & 3 y-5 & 0\end{array}\right]$

$$
\begin{aligned}
& \text { top row } \left.\begin{array}{rlrl}
5 & =2 x+1 \quad \text { middle row } 6 & =3 x \\
4 & =2 x & \text { boltomion } \\
2 & =x & 2 & =x
\end{array} \quad \begin{array}{l}
4 y-5 \\
9
\end{array}\right)=3 y \\
& 2=x \quad \longleftrightarrow \quad \longleftrightarrow \text { This is gad, } \\
& x \text { should be the } \\
& \text { same everywhere. }
\end{aligned}
$$

Definition of Matrix Addition - If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of order $m \times n$, their sum is the m $x n$ matrix given by $A+B=\left[a_{i j}+b_{i j}\right]$. The sum of two matrices of different orders is undefined.

Definition of Scalar Multiplication - If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and c is a scalar, the scalar multiple of A by c is the $m \times n$ matrix given by $c A=\left[c a_{i j}\right]$.

Properties of Matrix Addition and Scalar Multiplication - Let A, B, and C be $m \times n$ matrices and let c and c be scalars.

1. $A+B=B+A$	Commutative property of matrix addition
2. $A+(B+C)=(A+B)+C$	Associative property of matrix addition
3. $(c d) A=c(d A)$	Associative property of scalar multiplication
4. $1 A=A$	Scalar identity
5. $c(A+B)=c A+c B$	Distributive property
6. $(c+d) A=c A+d A$	Distributive property

Examples: If possible, find (a) $A+B$, (b) $A-B$, (c) $3 A$, and (d) $3 A-2 B$.

1. $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}2 & -1 \\ -1 & 8\end{array}\right]$

$$
\text { (a) } A+B=\left[\begin{array}{lr}
1 & -1 \\
2 & -1
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
-1 & 8
\end{array}\right]=\left[\begin{array}{cc}
1+2 & -1+-1 \\
2+-1 & -1+8
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
1 & 7
\end{array}\right]
$$

$$
\text { (b) } A-B=\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]-\left[\begin{array}{cc}
2 & -1 \\
-1 & 8
\end{array}\right]=\left[\begin{array}{cc}
1-2 & -1-(-1) \\
2-(-1) & -1-8
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
3 & -9
\end{array}\right]
$$

$$
\text { (c) } 3 A=3\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
3(1) & 3(-1) \\
3(2) & 3(-1)
\end{array}\right]=\left[\begin{array}{ll}
3 & -3 \\
6 & -3
\end{array}\right]
$$

$$
\text { (d) } 3 A-2 B=3\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]-2\left[\begin{array}{cc}
2 & -1 \\
-1 & 8
\end{array}\right]=\left[\begin{array}{cc}
3 & -3 \\
6 & -3
\end{array}\right]-\left[\begin{array}{cc}
4 & -2 \\
-2 & 16
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
8 & -19
\end{array}\right]
$$

2. $A=\left[\begin{array}{cc}1 & 6 \\ -1 & -5 \\ 1 & 10\end{array}\right], \quad B=\left[\begin{array}{cc}8 & -1 \\ 2 & 3 \\ -4 & 5\end{array}\right]$
$A+B=\left[\begin{array}{cc}1+8 & 6+-1 \\ -1+2 & -5+3 \\ 1+-4 & 10+5\end{array}\right]=\left[\begin{array}{cc}9 & 5 \\ 1 & -2 \\ -3 & 15\end{array}\right] \quad A-B=\left[\begin{array}{cc}1-8 & 6-(-1) \\ -1-2 & -5-3 \\ 1-(-4) & 10-5\end{array}\right]=\left[\begin{array}{cc}-7 & 7 \\ -3 & -8 \\ 5 & 5\end{array}\right]$
$3 A=\left[\begin{array}{cc}3 & 18 \\ -3 & -15 \\ 3 & 30\end{array}\right] \quad 3 A-2 B=\left[\begin{array}{cc}3 & 18 \\ -3 & -15 \\ 3 & 30\end{array}\right]-\left[\begin{array}{cc}16 & -2 \\ 4 & 6 \\ -8 & 10\end{array}\right]=\left[\begin{array}{cc}-13 & 20 \\ -7 & -21 \\ 11 & 20\end{array}\right]$
3. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{cc}7 & 2 \\ 9 & -1 \\ 5 & 0\end{array}\right]$
$A+B$ not possible due to dimension difference $A-B$ not possible due to dimension difference $3 A=\left[\begin{array}{cc}3 & 6 \\ 9 & 12\end{array}\right] \quad 3 A-2 B$ not possible

Definition of Matrix Multiplication - If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ is an $n x p$ matrix, the product AB is an $m \times p$ matrix $A B=\left[c_{i j}\right]$ where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots+a_{i n} b_{n j}$.

Basically, we multiply the row of A by the column of B, adding the values as we go.

Examples: If possible, find AB and state the order of the result.

1. $A=\left[\begin{array}{cc}2 & 1 \\ -3 & 4 \\ 1 & 6\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & -1 & 0 \\ 4 & 0 & 2 \\ 8 & -1 & 7\end{array}\right]$
not possible to multiply... but we can find $B A$.

$$
\text { Bonus: } \begin{aligned}
B A & =\left[\begin{array}{ll}
0(2)-1(-3)+0(1) & 0(1)-1(4)+0(6) \\
4(2)+6(-3)+2(1) & 4(1)+0(4)+2(6) \\
8(2)-1(-3)+7(1) & 8(1)-1(4)+7(6)
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -4 \\
10 & 16 \\
26 & 46
\end{array}\right]
\end{aligned}
$$

2. $A=\left[\begin{array}{cc}-1 & 6 \\ -4 & 5 \\ 0 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 0 & 9\end{array}\right]$

$$
\begin{gathered}
A \times B \\
3 \times 2 \quad 2 \times 2 \\
\lfloor\text { Loki } \\
\text { answer }
\end{gathered}
$$

$$
A B=\left[\begin{array}{cc}
-1(2)+6(0) & -1(3)+6(9) \\
-4(2)+5(0) & -4(3)+5(9) \\
0(2)+3(0) & 0(3)+3(9)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 51 \\
-8 & 33 \\
0 & 27
\end{array}\right]
$$

3. $A=\left[\begin{array}{l}10 \\ 12\end{array}\right], B=\left[\begin{array}{llll}6 & -2 & 1 & 6\end{array}\right]$
$A \times B$

$$
\frac{2 \times 1}{\text { ok }} \times 4 \text { answer }=2 \times 4
$$

$$
A B=\left[\begin{array}{cccc}
10(6) & 10(-2) & 10(1) & 10(6) \\
12(6) & 12(-2) & 12(1) & 12(6)
\end{array}\right]=\left[\begin{array}{cccc}
60 & -20 & 10 & 60 \\
72 & -24 & 12 & 72
\end{array}\right]
$$

Examples: If possible, find (a) $A B$, (b) $B A$, and (c) A^{2}.

$$
\begin{aligned}
& \text { 1. } A=\left[\begin{array}{cc}
6 & 3 \\
-2 & -4
\end{array}\right], B=\left[\begin{array}{cc}
-2 & 0 \\
2 & 4
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
6(-2)+3(2) & 6(0)+3(4) \\
-2(-2)-4(2) & -2(0)-4(4)
\end{array}\right]=\left[\begin{array}{cc}
-6 & 12 \\
-4 & -16
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
-2(6)+0(-2) & -2(3)+0(-4) \\
2(6)+4(-2) & 2(3)+4(-4)
\end{array}\right]=\left[\begin{array}{cc}
-12 & -6 \\
4 & -10
\end{array}\right] \\
& A^{2}=A A=\left[\begin{array}{ll}
6(6)+3(-2) & 6(3)+3(-4) \\
-2(6)-4(-2) & -2(3)-4(-4)
\end{array}\right]=\left[\begin{array}{cc}
30 & 6 \\
-4 & 10
\end{array}\right]
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{cc}
1 & 3 \\
-3 & 1
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
1(1)-1(-3) & 1(3)-1(1) \\
1(1)+1(-3) & 1(3)+1(1)
\end{array}\right]=\left[\begin{array}{cc}
4 & 2 \\
-2 & 4
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
1(1)+3(1) & 1(-1)+3(1) \\
-3(1)+1(1) & -3(-1)+1(1)
\end{array}\right]=\left[\begin{array}{cc}
4 & 2 \\
-2 & 4
\end{array}\right] \\
& A^{2}=A A=\left[\begin{array}{ll}
1(1)-1(1) & 1(-1)-1(1) \\
1(1)+1(1) & 1(-1)+1(1)
\end{array}\right]=\left[\begin{array}{ll}
0 & -2 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

Notice that in example $2, A B=B A$ but in example 1 that does not hod true. This leads us to some properties of matrix multiplication...

Properties of Matrix Multiplication -Let A, B, and C be matrices and let c be a scalar.

1. $A(B C)=(A B) C$
2. $A(B+C)=A B+A C$
3. $(A+B) C=A C+B C$
4. $c(A B)=(c A) B=A(c B)$

Associative property of matrix multiplication.
Distributive property
Distributive property
Associative property of scalar multiplication
There is not a commutative property stating $A B=B A$

Definition of Identity Matrix - The $n \times n$ matrix that consists of 1's on the diagonal and 0's elsewhere is called the identity matrix of order $n \times n$. Not that the identity matrix must be square.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2} \quad\left[\begin{array}{lll}
1 & 6 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} \quad \text { and } \text { so on }
$$

