Definition of the Inverse of a Square Matrix - Let A be an $n \times n$ matrix and let I_{n} be the $n \times n$ identity matrix. If there exists a matrix A^{-1} such that $A A^{-1}=I_{n}=A^{-1} A$, then A^{-1} is called the inverse of A .

Examples: Show that B is the inverse of A.

1. $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ we must show that $A B=I_{2}=B A$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1(2)-1(1) & 1(1)-1(1) \\
-1(2)+2(1) & -1(1)+2(1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { this is not enough, it } \\
\text { has to be shown both ways. } \\
\text { ugh! }
\end{array} \\
& B A=\left[\begin{array}{ll}
2(1)+1(-1) & 2(-1)+1(2) \\
1(1)+1(-1) & 1(-1)+1(2)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { they are inverses! }
\end{aligned}
$$

2. $A=\left[\begin{array}{ccc}-4 & 1 & 5 \\ -1 & 2 & 4 \\ 0 & -1 & -1\end{array}\right], B=\left[\begin{array}{ccc}-\frac{1}{2} & 1 & \frac{3}{2} \\ \frac{1}{4} & -1 & -\frac{11}{4} \\ -\frac{1}{4} & 1 & \frac{7}{4}\end{array}\right]$
$A B=\left[\begin{array}{ccc}-4\left(-\frac{1}{2}\right)+1\left(\frac{1}{4}\right)+5\left(-\frac{1}{4}\right) & -4(1)+1(-1)+5(1) & -4\left(\frac{3}{2}\right)+1\left(-\frac{1}{4}\right)+5\left(\frac{7}{4}\right) \\ -1\left(-\frac{1}{2}\right)+2\left(\frac{1}{4}\right)+4\left(-\frac{1}{4}\right) & -1(1)+2(-1)+4(1) & -1\left(\frac{3}{2}\right)+2\left(-\frac{11}{4}\right)+4\left(\frac{7}{4}\right) \\ 0\left(-\frac{1}{2}\right)-1\left(\frac{1}{4}\right)-1\left(-\frac{1}{4}\right) & 0(1)-1(-1)-1(1) & 0\left(\frac{3}{2}\right)-1\left(-\frac{11}{4}\right)-1\left(\frac{7}{4}\right)\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$B A=\left[\begin{array}{ccc}-\frac{1}{2}(-4)+1(-1)+\frac{3}{2}(0) & -\frac{1}{2}(2)+1(2)+\frac{3}{2}(1) & -\frac{1}{2}(5)+1(4)+\frac{3}{2}(-1) \\ \frac{1}{4}(-4)-1(-1)-\frac{11}{4}(0) & \frac{1}{4}(1)-1(2)-\frac{11}{4}(-1) & \frac{1}{4}(5)-1(4)-\frac{11}{4}(-1) \\ -\frac{1}{4}(-4)+1(-1)+\frac{7}{4}(0) & -\frac{1}{4}(1)+1(2)+\frac{7}{4}(-1) & -\frac{1}{4}(5)+1(4)+\frac{7}{4}(-1)\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Finding an Inverse Matrix - Let A be a square matrix of order n.

1. Write the $n \times 2 n$ matrix that consists of the given matrix A on the left and the identity matrix augmented on the right.
2. If possible, row reduce A to I using elementary row operations on the entire matrix $\left[\begin{array}{l:l}A & I\end{array}\right]$. The result will be the matrix $\left[\begin{array}{l:l}I & A^{-1}\end{array}\right]$. If this is not possible, A is not invertible.
3. Check your work by multiplying to see that the definition holds.

Examples: Find the inverse of the matrix, if it exists.

2. $A=\left[\begin{array}{cc}4 & -1 \\ -3 & 1\end{array}\right]$

$$
\frac{1}{4} R_{1}=\text { new } R_{1} \quad\left[\begin{array}{cc|cc}
1 & -1 / 4 & 1 / 4 & 0 \\
-3 & 1 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{ccccc}
3 R_{1} & 3 & -3 / 4 & 3 / 4 & 0 \\
+\frac{R 2}{\text { New } R_{2}} & -3 & 1 & 0 & 1
\end{array} \quad\left[\begin{array}{cc|cc}
1 & =1 / 4 & \frac{1}{4} & 0 \\
0 & 1 / 4 & 3 / 4 & 1
\end{array}\right] 4 R_{2}=n e \omega R_{2}\left[\begin{array}{lll}
1 & -1 / 4 & \frac{1}{4} \\
0 & 1 & 3
\end{array}\right]
$$

$$
\begin{array}{ccccc}
\frac{1}{4} R_{2} & 0 & \frac{1}{4} & \frac{3}{4} & 1 \\
\frac{+R_{1}}{\text { new } R_{1}} & \frac{1}{1} & -\frac{1}{4} & \frac{1}{4} & 0 \\
\hline & 0 & 1 & 1
\end{array}
$$

$$
\left[\begin{array}{ll|ll}
1 & 0 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right] \quad A^{-1}=\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]
$$

check by multiplying

There has to be a betturleasier way.

Fact: To find the inverse of a 2×2 matrix we can use a special formula. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then A is invertible if and only if $a d-b c \neq 0$. Moreover, if $a d-b c \neq 0$, the inverse is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Examples: Find the inverse using the formula.

1. $A=\left[\begin{array}{cc}1 & -2 \\ -3 & 2\end{array}\right] \quad a d-b c=1(2)-(-2)(-3)=2-6=-4$
switch places Change sign
2. $A=\left[\begin{array}{cc}-12 & 3 \\ 5 & -2\end{array}\right] \quad a d-b c=-12(-2)-3(5)=24-15=9$

$$
A^{-1}=\frac{1}{9}\left[\begin{array}{ll}
-2 & -3 \\
-5 & -12
\end{array}\right]=\left[\begin{array}{ll}
-2 / 9 & -1 / 3 \\
-5 / 9 & -4 / 3
\end{array}\right]
$$

3. You try it: $A=\left[\begin{array}{cc}-7 & 33 \\ 4 & -19\end{array}\right]$
