
8.3 The Inverse of a Square Matrix 

 

Definition of the Inverse of a Square Matrix – Let A be an n x n matrix and let 
nI  be the n x n identity 

matrix. If there exists a matrix 1A  such that 1 1

nAA I A A   , then 1A  is called the inverse of A. 

 

Examples: Show that B is the inverse of A. 
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Finding an Inverse Matrix – Let A be a square matrix of order n. 

1. Write the n x 2n matrix that consists of the given matrix A on the left and the identity matrix 

augmented on the right. 

2. If possible, row reduce A to I using elementary row operations on the entire matrix  A I . 

The result will be the matrix 1I A   . If this is not possible, A is not invertible. 

 3. Check your work by multiplying to see that the definition holds. 

 

Examples: Find the inverse of the matrix, if it exists. 
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Fact: To find the inverse of a 2 x 2 matrix we can use a special formula. If
a b

A
c d
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, then A is 

invertible if and only if 0ad bc  . Moreover, if 0ad bc  , the inverse is given by  
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Examples: Find the inverse using the formula. 
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3. You try it:
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