## Transformations

For any of our parent functions, we can move them about the coordinate system using both rigid and non-rigid transformations.

Rigid transformations keep the original shape and size of the graph but moves the entire graph horizontally, vertically, or is a mirror image.

Given any function $f(x)$, the transformed graph given by $g(x)=f(x-h)+k$ is the graph of the original subject to:

- Horizontal shift $h$ units. (On the inside so deals directly with $x$ is left/right.)
- For $g(x)=f(x-h)+k$, this shift is to the right.
- For $g(x)=f(x+h)+k$, this shift is to the left.
- Trick: Solve $x-h=0$ or $x+h=0$ to find the direction if necessary.
- Vertical shift $k$ units. (On the outside so deals directly with $y$ is up/down.)
- For $g(x)=f(x-h)+k$, this shift is up.
- For $g(x)=f(x-h)-k$, this shift is down.
- Trick: After you apply the function, you either add or subtract to move your graph up or down.

Given any function $f(x)$, the transformed graph given by

- $g(x)=f(-x)$ is a horizontal reflection across the $y$-axis.
- $g(x)=-f(x)$ is a vertical reflection across the $x$-axis.

Non-rigid transformations stretch of shrink the shape of the graph. It will still have its basic recognizable shape, but may be wider or narrower.

Given any function $f(x)$, the transformed graph given by $g(x)=a f(b x)$ is the graph of the original subject to:

- A vertical stretch of $a$ units if $a>1$ and a vertical shrink of $a$ units if $0<a<1$. A vertical stretch is like taking the ends of the graph and pulling it upward. This naturally makes the graph thinner. A vertical shrink is like pushing the graph toward the $x$-axis making the graph wider.
- A horizontal stretch of $b$ units if $0<b<1$ and a horizontal shrink of $b$ units if $b>1$. A horizontal stretch is like taking the ends of the graph and pulling out to the sides. This naturally makes the graph wider. A horizontal shrink is like pushing the graph toward the $y$-axis making the graph thinner.
- Notice that the vertical stretch and the horizontal shrink have the same effects on the graph.

Rigid transformations using $f(x)=\sqrt{x}$.

Shift left three units: $y=\sqrt{x+3}$


Shift down one unit: $y=\sqrt{x}-1$


Shift right four units: $y=\sqrt{x-4}$


Shift up two units: $y=\sqrt{x}+2$


Reflect across the $x$-axis: $y=-\sqrt{x}$


Reflect across the $y$-axis: $y=\sqrt{-x}$


Non-rigid transformations using $f(x)=x^{2}$

Vertical stretch by a factor of 3: $y=3 x^{2}$


Vertical shrink by a factor of 4: $y=\frac{1}{4} x^{2}$


Horizontal shrink by a factor of 2: $y=(2 x)^{2}$


Horizontal stretch by a factor of 3: $y=\left(\frac{1}{5} x\right)^{2}$


