Chapter Eleven: Techniques of Differentiation with Applications

11.1 Derivatives of Powers, Sums, and Constant Multiples

*

Now we can use shortcuts. If I ask you to compute the derivative using the definition, you must use the limit definition. Otherwise, you may use these rules.

Power Rule If n is any constant and $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.

Differential Notation - Differentiation $\frac{d}{d x}$ means "the derivative with respect to x ." Thus, $\frac{d}{d x}[f(x)]$ is the same thing as $f^{\prime}(x)$, the derivative of $f(x)$ with respect to x. If y is a function of x, then the derivative of y with respect to x is $\frac{d}{d x}(y)$ or, more compactly, $\frac{d y}{d x}$.

Derivatives of Sums, Differences, and Constant Multiples If $f(x)$ and $g(x)$ are any two differentiable functions, and if c is any constant, then the functions $f(x) \pm g(x)$ and $c f(x)$ are differentiable and

$$
\begin{array}{ll}
(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x) & \text { Sum Rule } \\
(c f(x))^{\prime}=c f^{\prime}(x) & \text { Constant Multiple Rule }
\end{array}
$$

In words:

The derivative of a sum is the sum of the derivatives, and the derivative of a difference is the difference of the derivatives.

The derivative of c times a function is c times the derivative of the function.

Differential Notation:

$$
\begin{aligned}
& \frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x)) \\
& \frac{d}{d x}[c f(x)]=c \frac{d}{d x}(f(x))
\end{aligned}
$$

So we can now find the derivative of all polynomials.

Constant times \boldsymbol{x} and a constant If c is any constant, then $\frac{d}{d x}(c x)=c$ and $\frac{d}{d x}(c)=0$.
Derivative of $|\mathbf{x}|: \frac{d}{d x}|x|=\frac{|x|}{x}$. Note that the derivative does not exist when $\mathrm{x}=0$.

Examples: Find the derivatives.

1. $f(x)=x^{4}$

$$
f^{\prime}(x)=4 x^{4-1}=4 x^{3}
$$

2. $f(x)=x^{-1}$

$$
f^{\prime}(x)=-1 x^{-1-1}=-1 x^{-2}=-x^{-2}
$$

3. $f(x)=-x^{3}-3 x^{2}-1$
derivative of the

$$
\begin{aligned}
& f(x)=-x^{3}-3 x^{2}-1 \\
& f^{\prime}(x)=-\left(3 x^{3-1}\right)-3\left(2 x^{2-1}\right)-0^{k} \text { derivative ot constant I is } 0 . \\
& f^{\prime}(x)=-3 x^{2}-6 x
\end{aligned}
$$

4. $f(x)=\frac{2}{x}-\frac{2}{x^{3}}+\frac{1}{x^{4}} \quad$ Rewrite: $f(x)=2 x^{-1}-2 x^{-3}+1 x^{-4}$

$$
\begin{array}{ll}
& f^{\prime}(x)=2\left(-1 x^{-1-1}\right)-2\left(-3 x^{-3-1}\right)+1\left(-4 x^{-4-1}\right) \\
& f^{\prime}(x)=-2 x^{-2}+6 x^{-4}-4 x^{-5} \\
\text { Rewrite: } & f^{\prime}(x)=-\frac{2}{x^{2}}+\frac{6}{x^{4}}-\frac{4}{x^{5}}
\end{array}
$$

5. $t(x)=3|x|-\sqrt{x}$

Rewrite:

$$
t(x)=3|x|-x^{1 / 2}
$$

$$
t^{\prime}(x)=3 \frac{|x|}{x}-\frac{1}{2} x^{1 / 2-1}
$$

$$
t^{\prime}(x)=\frac{3|x|}{x}-\frac{1}{2} x^{-1 / 2}
$$

$$
\text { Rewrite: } t^{\prime}(x)=\frac{3|x|}{x}-\frac{1}{2 x^{1 / 2}}=\frac{3|x|}{x}-\frac{1}{2 \sqrt{x}}
$$

Examples: Find the equation of the tangent line to the graph of the given function at the given point.

$$
\begin{aligned}
& \text { 1. } f(x)=x^{4} ;(-2,16) \\
& f^{\prime}(x)=4 x^{4-1}=4 x^{3} \\
& m=f^{\prime}(-2)=4(-2)^{3}=4(-8)=-32 \\
& y-16=-32(x-(-2)) \\
& y-16=-32(x+2) \\
& y-16=-32 x-64 \\
& \rightarrow y=-32 x-48 \longleftarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { slope }=\text { derivative } \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

2. $f(x)=\frac{1}{x^{2}} ; x=1 \quad$ evaluate: $f(1)=\frac{1}{(1)^{2}}=1$ to get point $(1,1)$

Rewrite: $f(x)=x^{-2}$

$$
\begin{array}{rl}
& \\
f^{\prime}(x)=-2 x^{-2-1}=-2 x^{-3}=\frac{-2}{x^{3}} & y-1=-2(x-1) \\
m=f^{\prime}(1)=\frac{-2}{(1)^{3}}=-\frac{2}{1}=-2 & \\
y-1=-2 x+2 \\
m^{-2} & y=-2 x+3
\end{array}
$$

Examples: Find all values of x (if any) where the tangent line to the graph is horizontal.

$$
\begin{aligned}
& \text { 1. } y=-3 x^{2}-x \\
& y^{\prime}=-3(2 x)-1 \\
& y^{\prime}=-6 x-1 \\
& 0=-6 x-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { derivative } \\
& \text { of }-x \text { is }-1
\end{aligned}
$$

$$
f^{\prime}(x)=0
$$

2. $y=x-\sqrt{x}=x-x^{1 / 2}$

$$
\begin{aligned}
& \text { 2. } y=x-\sqrt{x}=1-\frac{1}{2} x^{1 / 2-1}=1-\frac{1}{2} x^{-1 / 2}=1-\frac{1}{2 x^{1 / 2}}=1-\frac{1}{2 \sqrt{x}} \\
& y^{\prime}=1-\frac{1}{2 \sqrt{x}} \\
& 0=1-\frac{1}{2}=2 \sqrt{x}=(\sqrt{x})^{2} \\
& 2 \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=1 \cdot 2 \sqrt{x}=\sqrt{x}
\end{aligned}
$$

L'Hospital's Rule If f and g are two differentiable functions such that substituting $x=a$ in the expression $\frac{f(x)}{g(x)}$ gives either $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. That is, we can replace $f(x)$ and $g(x)$ with their derivatives and try again to take the limit.

Examples: Use L'Hospitals' Rule, if necessary.

$$
\begin{aligned}
& \text { 1. } \lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}+x}=\frac{(-1)^{2}+3(-1)+2}{(-1)^{2}+(-1)}=\frac{1-3+2}{1-1}=\frac{0}{0} \text { use 1. Hospital's rule } \\
& \lim _{x \rightarrow-1} \frac{2 x+3}{2 x+1}=\frac{2(-1)+3}{2(-1)+1}=\frac{-2+3}{-2+1}=\frac{1}{-1}=-1
\end{aligned}
$$

2. $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-x-2}=\frac{(2)^{2}-3(2)+2}{(2)^{2}-(2)-2}=\frac{4-6+2}{4-2-2}=\frac{0}{0}$ use the rule

$$
\lim _{x \rightarrow 2} \frac{2 x-3}{2 x-1}=\frac{2(2)-3}{2(2)-1}=\frac{4-3}{4-1}=\frac{1}{2}
$$

3. $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+5}{x^{3}-1}=\frac{(1)^{2}-4(1)+5}{(1)^{3}-1}=\frac{1-4+5}{1-1}=\frac{2}{0}$

Cannot use the rule!
to evaluate this limit we could use a table:

the limit
does not exist (due)

