Chapter Eleven: Techniques of Differentiation with Applications

11.1 Derivatives of Powers, Sums, and Constant Multiples

Now we can use shortcuts. If | ask you to compute the derivative using the definition, you must use the *
limit definition. Otherwise, you may use these rules.

n—1

Power Rule If n is any constant and f(x) =x", then f'(x) =nx

d d
Differential Notation - Differentiation —; means "the derivative with respect to x." Thus, d—[f(x)] is
x X

the same thing as f'(x), the derivative of f(x) with respect to x. If y is a function of x, then the derivative

d d
of y with respect to x is —(y) or, more compactly, & .
dx dx

Derivatives of Sums, Differences, and Constant Multiples If f(x) and g(x) are any two differentiable
functions, and if c is any constant, then the funtions f(x)+g(x) and cf(x) are differentiable and

(f(x)ig(x))':f'(x)ig'(x) Sum Rule
(cf(x))' =¢f"(x) Constant Multiple Rule
In words:

The derivative of a sum is the sum of the derivatives, and the derivative of a difference is the difference
of the derivatives.

The derivative of ¢ times a function is ¢ times the derivative of the function.

Differential Notation:

So we can now find the derivative of all polynomials.



d
>k Constant times x and a constant If c is any constant, then —(cx) ¢ and —

|~

_— d
Derivative of |x|: —|x| =
dx

Examples: Find the derivatives.

1. f(x):x
fonz= dx" = 4%

2. f(x)zx
Pz ™= -l
3. f( ):—x -3x* -1
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dx

. Note that the derivative does not exist when x=0.
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Examples: Find the equation of the tangent line to the graph of the given function at the given point.
1 f(x)=x%(-2.16) S\D‘M - declvative
§ U= 4 Al
M= ﬁ\ -0 = L{l:ﬁ = 4= -3
lﬁ_] b= =32(%- (D)
Al =32 (x+ 1\
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Examples: Find all values of x (if any) where the tangent line to the graph is horizontal.
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L'Hospital's Rule If f and g are two differentiable functions such that substituting x=a in the expression
X 0 . X ) "(x

f( ) gives either —orf, then lim_, M—hm S ( )

g x) 0 o

. e Ty That is, we can replace f(x) and g(x)
g(x) g'(x)
with their derivatives and try again to take the limit.

Examples: Use L'Hospitals' Rule, if necessary.
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Cinnrt Use the pole!
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