Product Rule If $f(x)$ and $g(x)$ are differentiable functions of $x$, then so is their product $f(x) g(x)$, and $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$. In words, the derivative of the product is the derivative of the first times the second, plus the first times the derivative of the second.

Examples: Find the derivative.

1. $y=3 x^{2}(2 x+1)$

$$
y^{\prime}=6 x(2 x+1)+3 x^{2}(2)
$$

$$
\begin{array}{ll}
f(x)=3 x^{2} & g(x)=2 x+1 \\
f^{\prime}(x)=6 x & g^{\prime}(x)=2
\end{array}
$$

$$
y^{\prime}=12 x^{2}+6 x+6 x^{2} \quad \text { or } \quad y^{\prime}=18 x^{2}+6 x
$$

$$
\begin{aligned}
& \text { 2. } y=\left(x^{0.7}-4 x-5\right)\left(x^{-1}+x^{-2}\right) \\
& f(x)=x^{0.7}-4 x-5 \quad g(x)=x^{-1}+x^{-2} \\
& f^{\prime}(x)=0.7 x^{-0.3}-4 \quad g^{\prime}(x)=-x^{-2}-2 x^{-3} \text { Pare } 1 m \\
& y^{\prime}=\left(0.7 x^{-0.3}-4\right)\left(x^{-1}+x^{-2}\right)+\left(x^{0.7}-4 x-5\right)\left(-x^{-2}-2 x^{-3}\right)
\end{aligned}
$$

Parentheses are important
no way am I simplifying this one!!

$$
\text { 3. } f(x)=\sqrt{x}\left(x^{5}+3 x^{2}-x^{-3}\right)
$$

$$
\begin{array}{ll}
f(x)=\sqrt{x}=x^{1 / 2} & g(x)=x^{5}+3 x^{2}-x^{-3} \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} & g^{\prime}(x)=5 x^{4}+6 x+3 x^{-4}
\end{array}
$$

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}\left(x^{5}+3 x^{2}-x^{-3}\right)+\sqrt{x}\left(5 x^{4}+6 x+3 x^{-4}\right)
$$

4. $f(x)=\left(x^{2}-3 x+|x|\right)\left(\frac{1}{x^{3}}-\frac{7}{x^{2}}+3\right)$

$$
\begin{array}{ll}
f(x)=x^{2}-3 x+|x| & g(x)=\frac{1}{x^{3}}-\frac{7}{x^{2}}+3=x^{-3}-7 x^{-2}+3 \\
f^{\prime}(x)=2 x-3+\frac{|x|}{x} & g^{\prime}(x)=-3 x^{-4}+14 x^{-3} \\
f^{\prime}(x)=\left(2 x-3+\frac{|x|}{x}\right)\left(\frac{1}{x^{3}}-\frac{7}{x^{2}}+3\right)+\left(x^{2}-3 x+|x|\right)\left(-3 x^{-4}+14 x^{-3}\right)
\end{array}
$$

Quotient Rule If $f(x)$ and $g(x)$ are differentiable functions of $x$, then so is their quotient $f(x) / g(x)$
(provided $g(x) \neq 0$ ), and $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$. In words, the derivative of the quotient is the bottom derivative of the top, minus the top times the derivative of the bottom, all over the bottom squared. Or, lodehi - hidelo over lo squared.

Examples: Find the derivative.

$$
\begin{array}{ll}
\text { 1. } y=\frac{3 x-9}{2 x+4} & \\
l_{0}=2 x+4 & h_{i}=3 x-9 \\
\text { del }=2 & \text { deli }=3
\end{array}
$$

$$
\begin{aligned}
& \text { 2. } y=\frac{3 x^{2}-9 x+11}{4 x-1} \\
& \left.\right|_{0}=4 x-1 \quad h_{i}=3 x^{2}-9 x+11 \\
& \text { del }_{0}=4 \quad \text { deli }=6 x-9
\end{aligned}
$$

$$
y^{\prime}=\frac{(2 x+4)(3)-(3 x-9)(2)}{(2 x+4)^{2}}
$$

Note: the extensive use of parentheses are important!

$$
y^{\prime}=\frac{(4 x-1)(6 x-9)-\left(3 x^{2}-9 x+11\right)(4)}{(4 x-1)^{2}}
$$

Another note: the $(4 x-1)$ from the first part does not cancel with the denominator because it is not found alter the subtraction
3. $f(x)=\frac{\sqrt{x}+7}{2 x^{3}-14 x^{2}+x}$

$$
\begin{aligned}
& l_{0}=2 x^{3}-14 x^{2}+x \quad h_{i}=\sqrt{x}+7 \quad f^{\prime}(x)=\frac{\left(2 x^{3}-14 x^{2}+x\right)\left(\frac{1}{2} x^{-1 / 2}\right)-(\sqrt{x}+7)\left(6 x^{2}-28 x+1\right)}{\left(2 x^{3}-14 x^{2}+x\right)^{2}} \\
& d_{e}=6 x^{2}-28 x+1 \quad \text { dehi }=\frac{1}{2} x^{-1 / 2} \quad f^{3} \quad
\end{aligned}
$$

4. $f(x)=\frac{x^{-6}+7 x^{3}-1}{|x|}$

$$
\begin{aligned}
& 1_{0}=|x| h_{1}=x^{-6}+7 x^{3}-1 \\
& d e l_{0}=\frac{|x|}{x} \quad \text { de hi }=-6 x^{-7}+21 x^{2}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{|x|\left(-6 x^{-7}+21 x^{2}\right)-\left(x^{-6}+7 x^{3}-1\right)\left(\frac{|x|}{x}\right)}{(|x|)^{2}}
$$

