Extra Practice: The Composition Handout
Chain Rule If f is a differentiable function of u, and u is a differentiable function of x, then the composite $f(u)$ is a differentiable function of x, and $\frac{d}{d x}[f(u)]=f^{\prime}(u) \frac{d u}{d x}$. In words, the derivative of f (something) is the derivative of f, evaluated at 'something', times the derivative of 'something'. Or, if f is the outside and u is the inside function, then the chain rule says derivative of the outside, leave inside alone, times derivative of the inside. In differential notation: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.

Examples: Find the derivative.

1. $f(x)=(3 x-1)^{2}$

$$
\begin{array}{ll}
\text { Inside }=3 x-1 \\
\text { outside }=()^{2}
\end{array} \quad f^{\prime}(x)=2(3 x-1)^{2-1}(3)=6(3 x-1)=18 x-6
$$

2. $f(x)=(1-x)^{-1}$

$$
\begin{array}{ll}
f(x)=(1-x)^{-1} \\
\text { Inside }=1-x & f^{\prime}(x)=-1(1-x)^{-1-1}(-1)=1(1-x)^{-2} \text { or }(1-x)^{-2} \\
\text { outside }=()^{-1}
\end{array}
$$

3. $f(x)=(4 x+7)^{-2}$

$$
\begin{aligned}
& \text { Inside }=4 x+7 \\
& \text { outside }=(\quad)^{-2}
\end{aligned}
$$

$$
f^{\prime}(x)=-2(4 x+7)^{-2-1}(4)=-8(4 x+7)^{-3}
$$

4. $g(x)=\frac{1}{\left(x^{2}-5 x\right)^{3}}$ Rewrite: $g(x)=\left(x^{2}-5 x\right)^{-3}$

$$
\begin{aligned}
& \text { Inside }=x^{2}-5 x \\
& \text { outside }=()^{-3} \\
& g^{\prime}(x)=-3\left(x^{2}-5 x\right)^{-3-1}(2 x-5)=-3(2 x-5)\left(x^{2}-5 x\right)^{-4}
\end{aligned}
$$

$$
\text { Rewrite: } g^{\prime}(x)=\frac{-3(2 x-5)}{\left(x^{2}-5 x\right)^{4}}
$$

5. $g(x)=\frac{3}{(7 x-9)^{5}} \quad$ Rewrite: $g(x)=3\langle 7 x-9)^{-5}$

$$
\begin{array}{ll}
\text { aside }=7 x-9 & g^{\prime}(x)=3\left[-5(7 x-9)^{-5-1}(7)\right]=-105(7 x-9)^{-6} \\
\text { outside }=()^{-5} & -105
\end{array}
$$

Rewrite: $g^{\prime}(x)=\frac{-105}{(7 x-9)^{6}}$
6. $r(x)=\left(0.1 x-4.2 x^{-1}\right)^{0.5}$

$$
\begin{array}{ll}
\text { 6. } r(x)=\left(0.1 x-4.2 x^{-1}\right) & r^{\prime}(x)=0.5\left(0.1 x-4.2 x^{-1}\right)^{0.5-1}\left(0.1-4.2\left(-1 x^{-1-1}\right)\right) \\
\text { inside }=0.1 x-4.2 x^{-1} & r^{0.5} \\
\text { outside }=(x)=0.5\left(0.1 x-4.2 x^{-1}\right)^{-0.5}\left(0.1+4.2 x^{-2}\right)
\end{array}
$$

7. $s(x)=\left(\frac{3 x-9}{2 x+4}\right)^{3}$

$$
\text { inside }=\frac{3 x-9}{2 x+4} \quad \begin{aligned}
& \text { derivative } \\
& \text { inside }
\end{aligned}=\frac{(2 x+4)(3)-(3 x-9)(2)}{(2 x+4)^{2}}=\frac{6 x+12-6 x+18}{(2 x+4)^{2}}=\frac{30}{(2 x+4)^{2}}
$$

outside $=()^{3}$

$$
S^{\prime}(x)=3\left(\frac{3 x-9}{2 x+4}\right)^{3-1}\left(\frac{30}{(2 x+4)^{2}}\right)=3\left(\frac{3 x-9}{2 x+4}\right)^{2}\left(\frac{30}{(2 x+4)^{2}}\right)
$$

yes, we bassign will take this!
8. $g(x)=\frac{\left(x^{2}+3 x\right)^{-2}}{1^{8 t}} \frac{\left(5 x^{3}+2\right)}{z^{\text {nd }}}$ Product Role

$$
\begin{array}{lll}
1^{s T}=\left(x^{2}+3 x\right)^{-2} & \text { der. of } 1^{\text {st }}=-2\left(x^{2}+3 x\right)^{-3}(2 x+3) & \text { In }=x^{2}+3 x \\
2^{n d}=\left(5 x^{3}+2\right) & \text { der of } 2^{\text {Nd }}=15 x^{2} & \text { out }=()^{-2}
\end{array}
$$

Using product rule we find

$$
g^{\prime}(x)=\left(x^{2}+3 x\right)^{-2}\left(15 x^{2}\right)+\left(5 x^{3}+2\right)\left(-2\left(x^{2}+3 x\right)^{-3}(2 x+3)\right)
$$

* der $2^{\text {nd }}+2^{\text {nd }} * \underbrace{\text { derivative of } 1^{\text {sr }}}$
used chain rule to find this

Example: Paramount Electronics has an annual profit given by $P=-100,000+5000 q-0.25 q^{2}$ where q is the number of laptop computers it sells each year. The number of laptop computers it can make and sell each year depends on the number n of electrical engineers Paramount employs, according to the equation $q=30 n+0.1 n^{2}$. Use the chain rule to find $\left.\frac{d P}{d n}\right|_{n=10}$ and interpret the result.

According to the chain rule, $\frac{d p}{d n}=\frac{d p}{d q} \cdot \frac{d q}{d n}$.

$$
\begin{aligned}
& \frac{d P}{d q}=\frac{d}{d q}\left(-100,000+5000 q-0.25 q^{2}\right)=0+5000-0.25(2 q)=5000-0.5 q \\
& \frac{d q}{d n}=\frac{d}{d n}\left(30 n+0.1 n^{2}\right)=30+0.1(2 n)=30+0.2 n
\end{aligned}
$$

So $\frac{d P}{d n}=\frac{d p}{d q} \cdot \frac{d q}{d n}=(5000-0.5 q)(30+0.2 n)$
What about $n=10$? We can substit ute for n, but what is q ? Use the original equation to find $q(10)=30(10)+0.1(10)^{2}=300+10=310$.
Now $\begin{aligned} &\left.\frac{d P}{d_{n}}\right|_{n=10}=(5000-0.5(310))(30+0.2(10))=(5000-155)(30+2)=4845(32) \\ &=155040\end{aligned}$

$$
=155040
$$

$\frac{d P}{d n}$ is change in profit per engineer. $\left.\frac{d P}{d n}\right|_{n=10}=155,040$ means
for 10 engineers, the company's profits will increase $\$ 155,040$ per electrical engineer.

