We are used to explicit functions where y is a direct function of x. Now we will talk about implicit functions where we can't solve for y but we always keep in mind that y is a function of x.

Examples: Find $\mathrm{dy} / \mathrm{dx}$ using implicit differentiation and by solving for y.

$$
\begin{aligned}
& \text { 1. } 4 x-5 y=9 \\
& \text { Implicit } \\
& 4-5 \frac{d y}{d x}=0 \\
& -5 \frac{d y}{d x}=-4 \\
& \frac{d y}{d x}=\frac{-4}{-5}=\frac{4}{5}
\end{aligned}
$$

2. $x-y=x y$
implicit

$$
1-\frac{d y}{d x}=1(y)+x \frac{d y}{d x}
$$

$$
-y+\frac{d y}{d x}-y+\frac{d y}{d x}
$$

$$
1-y=x \frac{d y}{d x}+\frac{d y}{d x}
$$

$$
1-y=\frac{d y}{d x}(x+1)
$$

$$
\frac{1-y}{x+1}=\frac{d y}{d x} \text { implicit }
$$

$$
\text { explicit: Solve for } y \rightarrow-5 y=9-4 x ~ \begin{aligned}
-5 & =\frac{9}{-5}-\frac{4 x}{-5} \Rightarrow y=\frac{4}{5} x-9
\end{aligned}
$$

$$
\text { Derivative } \rightarrow \frac{d y}{d x}=\frac{4}{5}+0=\frac{4}{5}
$$

$$
\text { explicit: solve for } \begin{aligned}
y \rightarrow x & =x y+y \\
x & =y(x+1) \\
\frac{x}{x+1} & =y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(x+1)(1)-x(1)}{(x+1)^{2}}=\frac{d y}{d x} r \text { derivative } \\
& \frac{x+1-x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}}=\frac{d y}{d x} \text { explicit }
\end{aligned}
$$

To see that these two are the same we would need to substitute for y in the Implicit derivative and simplify.

Examples: Find the derivative $\mathrm{dy} / \mathrm{dx}$ using implicit differentiation.

1. $2 x^{2}-y^{2}=4$

$$
\begin{aligned}
4 x-2 y \frac{d y}{d x} & =0 \\
-2 y \frac{d y}{d x} & =-4 x \\
\frac{d y}{d x} & =\frac{-4 x}{-2 y}
\end{aligned}
$$

2. $\frac{x y}{2}-y^{2}=3 \quad \frac{1}{2} x y-y^{2}=3$
3. $x^{2} e^{y}-y^{2}=e^{x}$
product

$$
\begin{gathered}
2 x e^{y}+x^{2} e^{y} \frac{d y}{d x}-2 y \frac{d y}{d x}=e^{x} \\
\frac{d y}{d x}\left(x^{2} e^{y}-2 y\right)=e^{x}-2 x e^{y} \\
\frac{d y}{d x}=\frac{e^{x}-2 x e^{y}}{x^{2} e^{y}-2 y}
\end{gathered}
$$

Examples: Use implicit differentiation to find the slope of the tangent line and the equation of the tangent line at the indicated point.

1. $3 x^{2}-y^{2}=1 \quad(-2,1)$
A) Find $\frac{d y}{d x}$: $6 x-2 y \frac{d y}{d x}=0$
B) $\left.\frac{d y}{d x}\right|_{(-2,1)}=\frac{3(-2)}{(1)}=\frac{-6}{1}=-6$

$$
\begin{aligned}
-2 y \frac{d y}{d x} & =-6 x \\
\frac{d y}{d x} & =\frac{-6 x}{-2 y}=\frac{3 x}{y}
\end{aligned}
$$

derivative at the point
c) Use $m=-6$ and point $(-2,1)$:
on $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y=m x+b \\
& 1=-6(-2)+b \\
& 1=12+b \\
& -11=b
\end{aligned}
$$

2. $\ln (x-y)+1=3 x^{2}, \quad x=0$
A) Find $\frac{d y}{d x}: \quad \frac{1-\frac{d y}{d x}}{x-y}+0=6 x$

$$
\begin{aligned}
\ln (0-y)+1 & =3(0)^{2} \\
\ln (-y)+1 & =0 \\
\ln (-y) & =-1
\end{aligned}
$$

$$
\frac{1}{x-y}-\frac{\frac{d y}{d x}}{x-y}=6 x
$$

$$
-(x-y) \frac{-\frac{d y}{d x}}{x-y}=\left(6 x-\frac{1}{x-y}\right)(-(x-y))
$$

$$
\frac{d y}{d x}=-6 x(x-y)+1
$$

b) $\left.\frac{d y}{d x}\right|_{\left(0,-e^{-1}\right)}=-6(0)\left(0+e^{-1}\right)+1=1$
c) equation of tangent line. $y-\left(-e^{-1}\right)=1(x-0)$

$$
\begin{aligned}
& y+e^{\prime}=x \\
& y=x-e^{-1}
\end{aligned}
$$

