12.4 Analyzing Graphs

Features of a Graph:

1. The x - and y-intercepts: If $y=f(x)$, find the x-intercepts by setting $y=0$ and solving for x; find the y-intercept by setting $x=0$ and solving for y.
2. Relative Extrema: Use the technique of section 12.1 to find relative extrema.
3. Points of Inflection: Use the techniques of section 12.3 to find points of inflection.
4. Behavior near points where the function is not defined: If $f(x)$ is not defined at $x=a$, consider $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ to see how the graph behaves as x approaches a.
5. Behavior at infinity: Consider $\lim _{x \rightarrow \pm \infty} f(x)$, if appropriate, to see how the graph behaves to the left and the right as x gets extremely large.

Examples: Sketch the graph, label everything.

1. $f(x)=-x^{2}-2 x-1$
y-int is $f(0)=-1$
x-int is $0=-x^{2}-2 x-1$ too hard, skip it.

Critical $x=-1$ $f(-1)=0$
$f^{\prime \prime}(x)=-2$
no points of inflection
$f^{\prime \prime}$ is always negative
So always Concave down
not a rational function
so no cosies about limits
extra point as needed: $x=-2$

$$
f(-2)=-(-2)^{2}-2(-2)-1=-1
$$

$$
\begin{aligned}
f^{\prime}(x) & =-2 x-2 \\
0 & =-2 x-2 \\
2 x & =-2 \\
x & =-1 \text { critical point }
\end{aligned}
$$

2. $f(x)=4 x^{3}+3 x^{2}+2$
$(0,2) \quad y$-int is $f(0)=2$ x-int too hard

$$
\begin{gathered}
f^{\prime \prime}(x)=24 x+6 \\
0=24 x+6 \\
-6=24 x
\end{gathered}
$$

$$
-\frac{6}{24}=x=-\frac{1}{4}
$$

$$
f\left(-\frac{1}{4}\right)=2.125 \quad \begin{array}{r}
(-0.25,2.125) \\
\text { point of inf }
\end{array}
$$

$$
\begin{aligned}
& (-0.25,2.125) \\
& \text { point of inflection }
\end{aligned}
$$

concave up $\left(-\frac{1}{4}, \infty\right)$
concave down $\left(-\infty,-\frac{1}{4}\right)$

3. $f(x)=x^{2}+\frac{1}{x^{2}} \longleftarrow x=0$ not in domain of f. \downarrow

$$
f^{\prime}(x)=2 x-2 x^{-3}
$$

no y-intercept
no x-intercept

$$
f(x)=x^{2}+x^{-2}
$$

Critical ps

$$
\begin{array}{ll}
(-1,2) & f(-1)=2 \\
(1,2) & f(1)=2 \\
& f^{\prime \prime}(x)=2+6 x^{-4} \\
& f^{\prime \prime}(x)=2+\frac{6}{x^{4}}
\end{array}
$$

undefined at $x=0$
$0=2 x-\frac{2}{x^{3}}$
$0=2+\frac{6}{x^{4}}$
$-2=\frac{6}{x^{4}}$ never
so $f^{\prime \prime}(x) \neq 0$

Min min

$f^{\prime}(-2)=-4+\frac{2}{8}=n e g \quad f^{\prime}(/ 2)-1-i 6-n e g$
$f^{\prime}(-1 / 2)=-1+16$-pos $\quad F^{\prime}(2)=4-\frac{2}{8}$-pos
$\operatorname{Incrowsing~}(-1,0),(1, \infty)$
$\frac{2}{x^{3}}=2 x \rightarrow 2=2 x^{4} \rightarrow 1=x^{4} \rightarrow x= \pm 1$ decreasing $(-\infty, 1),(0,1)$
$f^{\prime}(x)=2+\frac{6}{x^{4}}$ is always
positive so
Concave up $(-\infty, 0),(0, \infty)$

Let's look more at $x=0$:

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 0^{-}}\left(x^{2}+\frac{1}{x^{2}}\right)=0+\infty=\text { Big positive } \\
\lim _{x \rightarrow 0^{-}}\left(x^{2}+\frac{1}{x^{2}}\right)=0+\infty=\text { big positive }
\end{array}\right\}
$$

Let's look at $\pm \infty$:

$$
\left.\begin{array}{l}
\lim _{x \rightarrow-\infty}\left(x^{2}+\frac{1}{x^{2}}\right)=\infty+0=\text { bigpositive } \\
\lim _{x \rightarrow \infty}\left(x^{2}+\frac{1}{x^{2}}\right)=\infty+0=\text { bigpositive }
\end{array}\right\} \text { no horizontal asymptote, }
$$

extra points'

