Chapter 13 The Integral

13.1 The Indefinite Integral

Definition: An anti-derivative of a function f is a function F such that $F^{\prime}=f$.

Example: An anti-derivative of $4 x^{3}$ is x^{4}; an anti-derivative of $4 x^{3}$ is $x^{4}+2$; an anti-derivative of $2 x$ is $x^{2}+11$.

Fact: If the derivative of $A(x)$ is $B(x)$, then the anti-derivative of $B(x)$ is $A(x)$.

Definition: $\int f(x) d x$ is read "the indefinite integral of $f(x)$ with respect to x^{n} and stands for the set of anti-derivatives of f. Thus, $\int f(x) d x$ is a collection of functions; it is not a single function or a number. The function f that is being integrated is called the integrand, and the variable x is called the variable of integration.

Think about it, you have the derivative and you want to find the original function. Since the derivative of a constant is zero, we have no way of knowing what the original constant was. So we use a general C in its place and that gives us the family of functions. This is known as the constant of integration. It allows us to go from talking about 'an' anti-derivative to 'the' anti-derivatives. (Who knew an English lesson was in all this mathy stuff?)

Just like there were rules for finding derivatives, there are rules for finding anti-derivatives. These rules, by necessity, are similar to the ones we had earlier.

Power Rule

$$
\begin{aligned}
& \text { Part 1: } \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \text { if } n \neq-1 \\
& \text { Part 2: } \int x^{-1} d x=\ln |x|+C \\
& \qquad \int \frac{1}{x} d x \quad \text { absolute value } \\
& \text { is absolutely important! }
\end{aligned}
$$

Exponential

$$
\int e^{x} d x=e^{x}+C
$$

If b is any positive number other than 1 , then

$$
\int b^{x} d x=\frac{b^{x}}{\ln b}+C \quad \text { i.e. } \int 2^{x} d x=\frac{2^{x}}{\ln 2}+C
$$

Sums, Differences, and Constant Multiples

$$
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x
$$

In words: the integral of a sum is the sum of the integrals (same with differences).
$\int k f(x) d x=k \int f(x) d x$ for any constant k.

Examples: Find the integral.

1. $\int x^{7} d x$
$=\frac{x^{7+1}}{7+1}+C$
$=\frac{x^{8}}{8}+c$

$$
\text { 3. } \begin{aligned}
& \left(x+x^{3}\right) d x \\
& =\int x d x+\int x^{3} d x \\
= & \frac{x^{1+1}}{1+1}+\frac{x^{3+1}}{3+1}+C \\
= & \frac{x^{2}}{2}+\frac{x^{4}}{4}+C
\end{aligned}
$$

2. $\int(-5) d x$

$$
=-5 x+C
$$

what has derivative equal to -5 ? $-5 x$ does
4. $\int(4-x) d x$

$$
\begin{aligned}
& =\int 4 d x-\int x d x \\
& =4 x-\frac{x^{1+1}}{1+1}+c \\
& =4 x-\frac{x^{2}}{2}+c
\end{aligned}
$$

5. $\int\left(\frac{1}{v^{2}}+\frac{2}{v}\right) d v=\int \frac{1}{v^{2}} d v+\int \frac{2}{v} d v=\int v^{-2} d v+2 \int \frac{1}{v} d v$

$$
\begin{aligned}
=\frac{v^{-2+1}}{-2+1}+2 \ln |v|+C & =\frac{v^{-1}}{-1}+2 \ln |v|+C \\
& =-\frac{1}{v}+2 \ln |v|+C
\end{aligned}
$$

6. $\int\left(4 x^{7}-x^{-3}\right) d x$

$$
\begin{aligned}
=4 \int x^{7} d x-\int x^{-3} d x & =4 \frac{x^{7+1}}{7+1}-\frac{x^{-3+1}}{-3+1}+C \\
& =4 \frac{x^{8}}{8}-\frac{x^{-2}}{-2}+C=\frac{x^{8}}{2}+\frac{1}{2 x^{2}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } \int\left(\frac{1}{x^{1.1}}-\frac{1}{x}\right) d x \quad \begin{array}{c}
\text { special } \\
\downarrow
\end{array} \\
& =\int x^{-1.1} d x-\int x^{-1} d x=\frac{x^{-1.1+1}}{-1.1+1}-\ln |x|+C \\
& =\frac{x^{-0.1}}{-0.1}-\ln |x|+C=-\frac{10}{x^{0.1}}-\ln |x|+C
\end{aligned}
$$

Examples: Applications
 cost is $\$ 100,000$. Find the cost function $C(x)$.

$$
C(x)=\int\left(10+\frac{x^{2}}{100,000}\right) d x=\int 10 d x+\frac{1}{100,000} \int x^{2} d x=10 x+\frac{1}{100000} \frac{x^{3}}{3}+\text { canst. }
$$

fixed cost is the constant

$$
C(x)=10 x+\frac{x^{3}}{300,000}+100,000
$$

2. The marginal cost of producing the xth box of CDs is $10+x+\frac{1}{x^{2}}$. The total cost to produce 100 boxes is $\$ 10,000$. Find the cost function $C(x)$.

$$
\begin{aligned}
& C(100)=10,000 \\
&=10 x+\frac{x^{1+1}}{1+1}+\frac{x^{-2+1}}{-2+1}+C \\
&=10 x+\frac{x^{2}}{2}+\frac{x^{-1}}{-1}+C \\
& C(x)=10 x+\frac{x^{2}}{2}-\frac{1}{x}+C \\
& 10,000=10(100)+\frac{(100)^{2}}{2}-\frac{1}{100}+C \\
& 10000=5999.99+C \\
& 4000.01=C
\end{aligned}
$$

3. The velocity of a particle moving in a straight line is given by $v=3 e^{t}+t$.
a) Find an expression for the position after time t.
velocity is derivative of position so position is anti-der of velocity

$$
S=\int v d t=\int\left(3 e^{t}+t\right) d t=3 \int e^{t} d t+\int t d t=3 e^{t}+\frac{t^{2}}{2}+C
$$

b) Given that $s=3$ at time $t=0$, find the constant of integration C , and hence find an expression for s in terms of t without any unknown constants.

$$
\begin{aligned}
& 3=3 e^{0}+\frac{(0)^{2}}{2}+C \\
& 3=3(1)+0+c \\
& 3=3+C \\
& 0=c
\end{aligned}
$$

