
Coordinate free numerics

Andrzej Pownuk
Department of Mathematical Science

University of Texas at El Paso
http://andrzej.pownuk.com

September 8, 2006

The physical significance of tensors

Laws of physics do not depend on our choice of coordinate system.
In particular, if a law of physics is true in one coordinate system
then it is automatically true in every other coordinate system.

Figure: Curvilinear coordinates and convective base vectors

Definition of coordinate free formulation

Definition
The problem is coordinate free (independent of coordinate
system) if it need not be changed when moving from one
coordinate system to another.

In other words the formulation is coordinate free if it is true in all
possible coordinate systems.

Is it possible to define a vector without coordinate system?

Methods of solutions of problems with vector parameters:
-analytical methods.
-graphical methods.

Second Newton’s low of dynamics in curvilinear coordinate
system

The vector form of Second Newton’s low of dynamics is the
following:

ma = f (1)

where a is an acceleration and f is a force. Let assume that we
have general curvilinear coordinate system (xi). Then the natural
basis vector of TMx space in R3 is given by the following vectors:

gi =
∂r

∂xi
(2)

All vectors from the equation (1) can be expressed as a linear
combination of basis vectors (2).

a =
∑
i

aigi

f =
∑
i

f igi
(3)

The numbers ai , f i are contravariant coordinates of the vectors a
and f. The velocity can be defined as a time derivative of the
vector r.

v =
dr

dt
=

∑

i

∂r

∂xi

dxi

dt
=

∑

i

giv
i =

∑

i

gi ẋi (4)

where gi = ∂r
∂xi

and v i = dxi
dt = ẋi . Acceleration can be defined

using second order time derivative.

ai = ẍi +
∑

j

∑

k

Γi
jk ẋj ẋk (5)

Now it is possible to write the equation (2) in arbitrary coordinate
system.

m

ẍi +

∑

j

∑

k

Γi
jk ẋj ẋk

 = f i (6)

Now we can formulate the initial value problem in a coordinate free
way

ma = f
r(0) = r0
v(0) = v0

(7)

or equivalently in general curvilinear coordinate system.

m

(
ẍi +

∑
j

∑
k

Γi
jk ẋj ẋk

)
= f i

r i (0) = r i
0

v i (0) = v i
0

(8)

SAGA - Scientific Computing with Algebraic
and Generative Abstractions

Supervisor :Magne Haveraaen
Department of Informatics
University of Bergen
Hyteknologisenteret
N-5020 BERGEN, Norway
WWW: http://www.ii.uib.no/saga/

The project supported by:

I The Research Council of Norway (NFR)

I European Union (EU) through ESPRIT-IV Long Term
Research

Figure: University of Bergen

I Algebraic structures
I Many Sorted Algebras
I The concept of the signature
I Theory, models, etc.
I Different logics
I ...
I Category theory

Algebraic Software Methodologies for PDEs

I using algebraic techniques for software structuring purposes
gives more mature software structures which are less prone to
redesigns than conventionally developed systems, providing a
general framework for solvers of most kinds of PDEs, with

I high degree of reuse even within the library itself, so that
advanced concepts are defined by combinations of basic
modules, which provides the ability that

I numerical solution strategy may be replaced with another just
by substituting a few modules and without changing the
system structure, prototype code development times are
reduced since central numerical modules are reused rather
than readapted, and

I only a few minor modules need to be replaced when porting
to and between HPC architectures.

Industrial Case Studies

Two industrial areas have been chosen for the practical tests of the
SAGA methodologies:

I seismic modelling,

I computational fluid dynamics.

Figure: Solution of wave equation

SAGA Technologies

Sapphire: For the quick prototyping of mathematical models we
have developed an algebraic programming language and a compiler
that translates recursive functions into non-recursive, imperative
code. This allows us to code the recursive equations of the
mathematical formulation of a solver directly as recursive functions
and compile this for both sequential and parallel HPC computers

SAGA Technologies

Sophus: This is a software library written in C++ and carefully
designed to mimic the abstract structure of the PDE mathematics.
By requiring strict adherence to specified interfaces, we have been
able to achieve that different implementations of the same
mathematical concepts are basically interchangeable.

SAGA Technologies

I Sophus library components can be presented as different layers
of abstractions.

I Application layer: solvers for PDEs such as the seismic
simulator and the coating problem.

I Tensor layer: handles coordinate systems, matrices and vectors
and general differentiation operators.

I Scalar field layer: numerical discretisations such as finite
differences and finite elements with partial derivatives.

I Mesh layer: implements grids for sequential and parallel HPC
machines.

SAGA Technologies

CodeBoost: This is a software transformation system being
developed to address the gap between well formed code (from a
software engineering point of view) and efficient code (from a
run-time point of view).

Data structures which are related to tensors - notes from
SOPHUS seminars

Signature for tensor has the following form:

T < R, k > (9)

where R-real numbers, k-dimension of the Rk space which is used
to the definition of manifold.
More extended definition of tensors has the following form:

T < R, k, v , c > (10)

where v is a number of vectors and c is a numbers of covectors.
Traditionally tensor space on the manifold M in the point x is
denoted by

T v
c (M) = V ⊗ ...⊗ V ⊗ V ∗ ⊗ ...⊗ V ∗ (11)

Operations on tensors
In the tensor class there are implemented basic arithmetic
operations.
Addition is an operation of tensor field.

+ : T v
c × T v

c −→ T v
c (12)

More extended version of that operation is defined in the following
way:

+ : T < R, k , v , c >,T < R, k, v , c >−→ T < R, k , v , c > (13)

Semantic of that operation can be defined using components:

A + B = Aj1...jv
i1...ic

gj1 ⊗ ...⊗ gic + B j1...jv
i1...ic

gj1 ⊗ ...⊗ gic =

= (Aj1...jv
i1...ic

+ B j1...jv
i1...ic

)gj1 ⊗ ...⊗ gic =

= C j1...jv
i1...ic

gj1 ⊗ ...⊗ gic = C

(14)

If we neglect the basis vectors we will get

A + B = Aj1...jv
i1...ic

+ B j1...jv
i1...ic

= C j1...jv
i1...ic

= C (15)

Multiplication by number ”*”

Multiplication is an operation of tensor field.

∗ : T v
c × R −→ T v

c

∗ : R × T v
c −→ T v

c
(16)

More extended version of that operation is defined in the following
way:

∗ : T < R, k, v , c >,R −→ T < R, k, v , c >
∗ : R,T < R, k, v , c >−→ T < R, k, v , c >

(17)

Semantic of that operation can be defined using components:

α ∗ A = A ∗ α = α ∗ Aj1...jv
i1...ic

gj1 ⊗ ...⊗ gic =

= C j1...jv
i1...ic

gj1 ⊗ ...⊗ gic = C
(18)

If we neglect the basis vectors we will get

α ∗ A = A ∗ α = α ∗ Aj1...jv
i1...ic

= C j1...jv
i1...ic

= C (19)

FEM discretization of tensor fields
If we divide M into finite elements M =

⋃
e=1

Me . Each finite

element contain some nodes xei ∈ Me . The values of the tensor
fields inside element can be approximated using shape functions

T(x) =
∑

i=1

Nei (x)Th(xei) (20)

Due to continuity of tensor field it is possible to create global list
of nodes.

xei =
∑

e

∑

j

Ueijxj (21)

Th(xei) =
∑

e

∑

j

UeijTh(xj) (22)

If we substitute the equation (22) to the equation (20) then we
will get:

Th(x) =
∑

i

Nei (x)
∑

e

∑

j

UeijTh(xj) (23)

FEM discretization of tensor fields

We can rewrite the equation(20) to the following form:

Th(x) =
∑

j

(∑

i

∑
e

Nei (x)Ueij

)
Th(xj) (24)

Now own can define global shape function in the following way:

Nj(x) =
∑

i

∑
e

UeijNei (x) (25)

FEM discretization of tensor fields

Th(x) =
∑

i

Nei (x)
∑

e

∑

j

Ueij

∑

k

gk(xj)T
jk (26)

Th(x) =
∑

j

∑

k

(∑

i

∑
e

Nei (x)Ueijgk(xj)

)
T jk (27)

Th(x) =
∑

j

∑

k

Njk(x)T jk (28)

where
Njk(x) =

∑

i

∑
e

Nei (x)Ueijgk(xj) (29)

Variational equations in the space of tensors and its
solution

Many BVP can be equivalently expressed as some variational
equations.

∀v ∈ V a(t, v) = l(v) (30)

Approximate solution of the equation (30) can be found in the
approximation space Vh from the following equation.

∀vh ∈ Vh a(th, vh) = l(vh) (31)

If we introduce some coordinate system {xi} then we will get also
some natural basis vectors of Tx(M) tangent vector space. Using
these basis vectors

gi =
∂r

∂xi
(32)

Variational equations in the space of tensors and its
solution

Each vector (or tensor) t(x) ∈ Tx(M) can be described using
contravariant t i or covariant ti coordinates and basis gi in the
following way

t =
∑

i

t igi =
∑

i

tig
i (33)

The vectors gi are basis of dual tangent vector space T ∗
x (M).

Using FEM discretization one can get

th(x) =
∑

i

∑

j

Nij(x)t
ij (34)

vh(x) =
∑

k

∑

l

Nkl(x)v
kl (35)

where
th(xj) =

∑

k

t jkgk(xj) (36)

Variational equations in the space of tensors and its
solution

If we substitute the equation (34) and (35) to the equation (30)
we will get the following system of linear equations:

∑

ij

Kijklu
ij = Qkl (37)

In this system it is possible to take into account the homogenous
and non-homogenous Dirichlet boundary conditions.
Some interesting results about finite element method on manifold
are in the paper:

M. Holst, Adaptive numerical treatment of elliptic systems on
manifolds. Advances in Computational Mathematics, 15: 139-191,
2001.

Example of coordinate free differential equation
Let us consider differential equation

du

dx
= f (x) (38)

We can rewrite this equation to the following ”coordinate free”
form

∇Xu = f (39)

where X is a unit vector field which is parallel to the manifold M.
From the definition of directional derivative we can calculate that

u(x(t))− u(x(t0)) =

∫

γ(t0,t)

∇Xudr =

∫

γ(t0,t)

fdr (40)

Then finally we have:

u(x(t)) =

∫

γ(t0,t)

fdr + u(x(t0)) (41)

Example of coordinate free differential equation

In coordinate description we can rewrite the equation (39) in the
following form:

∂u

∂xi
X i = f (42)

In one dimensional problems we have

du

dx
X (x) = f (43)

The function X (x) is known in each coordinate system and it is
equal to .

X (x) =
1√
g

(44)

then the equation (39) now has the form

1√
g

du

dx
= f (45)

Finite difference method

Let us consider the following boundary value problem

∂u
∂x = c ∂u

∂t
u(x , t)|t=0 = ût0(x)
u(x , t)|x=0 = û0(t)
u(x , t)|x=L = ûL(t)

(46)

In order to solve this problem FDM can be applied. Each partial
derivative will be replaced by appropriate finite difference.

Finite difference method

In the internal points.

∂u(xi , t)

∂x
=

ut
i+1 − ut

i−1

2∆x
(47)

In the boundary points. Left boundary

∂u(xi , t)

∂x
=

ut
i+1 − ut

i

∆x
(48)

Right boundary
∂u(xi , t)

∂x
=

ut
i − ut

i−1

∆x
(49)

The time derivative can be approximated for example using the
following method:

∂u(xi , t)

∂t
=

ut+∆t
i − ut

i

∆t
(50)

FDM

The whole algorithm has the following steps.
1) Initial boundary condition (t = t0)

ut0
i = ût0(xi) (51)

2) Update the time.
t = t + ∆t (52)

3) Apply boundary conditions.

ut
0 = û0(t), ut

n = ûL(t) (53)

4) Calculate the solution in the internal points.

ut+∆t
i = ut

i +
ut
i+1 − ut

i−1

2∆x

∆t

c
(54)

5) If t < tmax goto step 2.
6) End of calculations.

FDM - coordinate free

In order to make this example coordinate free we write the
equation (46) in coordinate free way.

L(u) = c ∂u
∂t

u(x , t)|t=0 = ût0(x)
u(x , t)|x=A = û0(t)
u(x , t)|x=B = ûL(t)

(55)

FDM - coordinate free

The solution in our case may have the following form:
1) Initial boundary condition (t = t0)

ut0
i = ût0(xi) (56)

2) Update the time.
t = t + ∆t (57)

3) Apply boundary conditions.

ut
A = û0(t), ut

B = ûL(t) (58)

4) Calculate the solution in the internal points.

ut+∆t = ut + L(ut)
∆t

c
(59)

5) If t < tmax goto step 2.
6) End of calculations.

Review of differential operators on manifold

Not all operations are implemented in Sophus.

Base vectors of tangent and cotangent space
We can describe manifold M using the following map

ψcartesian ◦ φ−1 : Rn ⊃ U 3 y → ψcartesian ◦ φ−1(y) ∈ Rn (60)

We will denote that function as χ = ψcartesian ◦ φ−1. Coordinate
base of the space T 1

0 (M) contain the following vectors:

∂r

∂yi
= gi =

∂χ(y)

∂yi
=

∂

∂yi
(ψcartesian ◦ φ−1(y)) (61)

In cartesian coordinates we have
(

∂r

∂yi

)k

= (gi)
k =

∂χk(y)

∂yi
=

∂

∂yi
(ψk

cartesian ◦ φ−1(y)) (62)

where k = 1, ...,m, i = 1, ..., n. We can write also that formula in
a simpler way

∂r

∂yi
= gi =

∑

k

∂xk
cartesian(y)

∂yi
ek (63)

Base of dual space

∂

∂xi
· dx j = gi · g j = δij (64)

If m = n then the map x = χ(y) = x(y) is invertible and we can
calculate the function y = χ−1(x) = y(x) then

dy i = g i =
∑

k

∂xi

∂xk
cartesian

ek (65)

If we know the basis vectors of the spaces T 1
0 (M) then each vector

X ∈ T 1
0 (M) can be described using contravariant components X i .

X =
∑

i

X igi (66)

If Y ∈ T 0
1 (M) then we can describe the vector Y using covariant

components.

Y =
∑

i

Yig
i (67)

Metric tensor

Definition
A weak pseudo-Riemannian metric on a manifold M is defined
to be a tensor field g ∈ T 0

2 (M) that is symmetric and weakly
nondegenerate, that is, such that at each
m ∈ M, g(m)(vm, wm) = 0 for all wm ∈ Tm(M) implies vm = 0. A
strong pseudo-Riemannian metric is a 2-tensor field that, in
addition is strongly nondegenerate for all m ∈ M; that is, the map
vm → g(m)(vm, .) is an isomorphism of Tm(M) onto T ∗

m(M). A
weak (resp., strong) pseudo-Riemannian metric is called weak
(resp., strong) Riemannian if in addition g(m)(vm, vm) > 0 for all
vm ∈ Tm(M), vm 6= 0 .

Any Hilbert space is a Riemannian manifold with a constant metric
equal to the inner product.

Metric tensor
If we have manifold M, coordinates of metric tensor can be defined
using base vectors of the space T 1

0 (M) and the inner product

gij = gi · gj = g(gi , gj) (68)

In that case metric tensor is a tensor of type T 0
2 (M).

g =
∑

ij

gijg
i ⊗ g j (69)

It is also possible to define a metric tensor in the following way

g ij = g i · g j (70)

In that case g ∈ T 2
0 (M)

g =
∑

ij

g ijgi ⊗ gj (71)

The metric tensor of the type T 1
1 (M) is has the following

components.

g =
∑

ij

δi
jgi ⊗ g j =

∑

ij

δj
i g

i ⊗ gj (72)

Metric tensor in cylindrical coordinates

In cylindrical coordinates metric tensor has the following covariant
coordinates (g =

∑
ij

gijg
i ⊗ g j)

[gij] =

1 0 0
0 r2 0
0 0 1

 (73)

Contravariant coordinates (g =
∑
ij

g ijgi ⊗ gj)are the following.

[g ij] =

1 0 0
0 1

r2 0
0 0 1

 (74)

Lowering and rising index

The following theorem come from Riesz.

Theorem
For every continuous linear functional f on a Hilbert space H,
there is a unique u ∈ H such that f (x) = (x , u) for all x ∈ H.
Note: (x , u) denotes the inner product between x and u.

As we can see in the spaces with inner product there is a map from
the vector space V and dual space V ∗. In other words for all
α ∈ V ∗ there is v = g](α) ∈ V such that

∀x ∈ V α(x) = g(v , x) = g(g](α), x) = g [(v)(x) (75)

Lowering and rising index

Each vector v can have coordinates in the base g1, ..., gn or in the
base g1, ..., gn.

v =
∑

i

vig
i =

∑

i

v igi (76)

where
vi =

∑
j

v jgij

v i =
∑
j

vjg
ij (77)

Differential forms

Let us consider a vector space V . Differential k-forms are tensor
fields of type (0, k) that are completely antisymmetric.
If we introduce coordinate system then basis vectors of the space
Ωk(M) are 1-form dx1, ..., dxm. Each member of the space Ωk(M)
can be expressed in coordinates in the following way:

ω =
∑

i

ωidx i (78)

where ωi = ω
(

∂
∂x i

)
.

Integration of differential forms
Let us consider differential form ω ∈ Ωk(M), some subset U ⊂ M
and

h : Rn ⊃ V 3 t → h(t) = x ∈ U ⊂ M (79)

is orientation-preserving diffeomorphism. Integral from the
differential form ω over the set U ⊂ M is defined as integral in the
space Rn ∫

V

h∗ω =

∫

U

ω (80)

For example if

f : R1 ⊃ (t1, t2) 3 t → f (t) = (x(t), y(t), z(t)) ∈ U ⊂ R3 (81)

is parametric description of sum curve γ ⊂ R3 then an integral
from one form ω = Pdx + Qdy + Rdz over the curve γ is equal to

∫

γ

ω =

∫

(t1,t2)

f ∗ω =

t2∫

t1

(
P

dx

dt
+ Q

dy

dt
+ R

dz

dt

)
dt (82)

Hodge star
Let V be a n-dimensional (n finite) vector space with inner product
g. The Hodge star operator (denoted by ∗) is a linear operator
mapping p-forms on M to (n − p)-forms, i.e.,

∗ : Ωp(Mn) → Ωn−p(Mn). (83)

In local coordinates {x1, . . . , xn}, where g = gijdx i ⊗ dx j , the
∗-operator is defined as the linear operator that maps the basis
elements of Ωp(Mn) as

∗(dx i1 ∧ · · · ∧ dx ip) =

=

√
|g |

(n−p)!g
i1l1 · · · g ip lpεl1···lp lp+1···lndx lp+1 ∧ · · · ∧ dx ln .

(84)

Here, |g | = det gij , and ε is the Levi-Civita permutation symbol.
This operator may be defined in a coordinate-free manner by the
condition

u ∧ ∗v = g(u, v) Vol(g) =< u, v > Vol(g) (85)

Interior product
Let us consider a vector x ∈ T 1

0 (M), convector α ∈ T 0
1 (M) and a

tensor t ∈ T v
c (M). The tensor t is equivalent to the following

multilinear function

t(c1, ..., cv , v1, ..., vc) =
∑

i1,...,iv ,j1,...,jc

t i1,...,iv
j1,...,jc

ci1 ...civ v
j1 ...v jc (86)

Interior product of the tensor t and the vector x can be defined
as the following mapping:

ix t(c1, ..., cv , v1, ..., vc−1) = t(c1, ..., cv , v1, ..., vc−1, x) =

=
∑

i1,...,iv ,j1,...,jc

t i1,...,iv
j1,...,jc

ci1 ...civ v
j1 ...v jc−1x jc =

=
∑

i1,...,iv ,j1,...,jc−1

(∑
k

t i1,...,iv
j1,...,jc−1,k

xk

)
ci1 ...civ v

j1 ...v jc−1 =

=
∑

i1,...,iv ,j1,...,jc−1

(ix t)
i1,...,iv
j1,...,jc−1

ci1 ...civ v
j1 ...v jc−1

(87)

In coordinates:

(ix t)
i1,...,iv
j1,...,jc−1

=
∑

k

t i1,...,iv
j1,...,jc−1,k

xk (88)

Inner product of two tensor in Hilbert spaces

Definition
Let H1 and H2 be two Hilbert spaces with inner products ·1 and ·2,
respectively. Inner product of two tensors φ1 ⊗ φ2, ψ1 ⊗ ψ2 where
φ1, ψ1 ∈ H1, φ2, ψ2 ∈ H2 can be defined in the following way:

(φ1 ⊗ φ2) · (ψ1 ⊗ ψ2) = (φ1 · ψ1)(φ2 · ψ2) (89)

Contraction

Let us consider a tensor t ∈ T v
c (M) the contraction of the k − th

contravariant and the l − th covariant index or for short the (k, l)
contraction, is the family of linear maps

C k
l : T v

c (M) 3 t −→ C k
l (t) ∈ T v−1

c−1 (M) (90)

where the contracted tensor has the following components.

C k
l (t)

i1,...,ik−1 ,̂ik ,ik+1,...,iv

j1,...,jl−1 ,̂jl ,jl+1,...,jv
=

∑
p

t
i1,...,ik−1,p,ik+1,...,iv
j1,...,jl−1,p,jl+1,...,jv

(91)

An important particular example of contraction is trace operator.
If t ∈ T 1

1 (M) then

tr(t) = C 1
1 (t) =

∑

i

t i
i (92)

Christoffel symbols

If one would like to calculate partial derivative with respect to the
curvilinear coordinates we will get Christoffel symbols

∂gi

∂x j
=

∑

k

Γk
ijgk (93)

∂gi

∂x j
=

∑

k

[k, ij]gk (94)

The symbol

[k, ij] =
∂gi

∂x j
· gk (95)

is Christoffel symbol of the first kind.
The symbol

Γk
ij =

{
k
ij

}
=

∂gi

∂x j
· gk (96)

is Christoffel symbol of the second kind.

Christoffel symbol

(
∂gj

∂xk

)i

=
1

2
g im

(
∂gmj

∂xk
− ∂gkj

∂xm
+

∂gmk

∂xj

)
= Γi

jk (97)

Covariant derivative (Covariant derivative of scalar filed)

Let us consider scalar filed f : M → R and the vector field X and
the flow FX

t which is generated by the vector field X .

∇X f =
d

dt
f ◦ FX

t for t = 0 (98)

As we can see covariant derivative of scalar filed is equal to Lie
derivative and in coordinates can be expressed as

∇X f (p) =
∑

i

∂f (p)

∂x i
X i (p) (99)

where p ∈ M.

Covariant derivative of vectors

The covariant derivative of the vector filed u in the direction of
the vector v can be calculated in the following way:

∇uv =
∑

k

v i

∑

i

∂uk

∂x i
+

∑

ij

Γk
iju

j

 gk =

∑

k

v iuk
;igk (100)

Covariant derivative can be viewed as an operator

∇ : T 1
0 (M)× T 1

0 (M) ∈ (X ,Y) −→ ∇XY ∈ T 1
0 (M) (101)

or
∇ : T 1

0 (M) 3 Y −→ ∇Y ∈ T 1
1 (M) (102)

in that case ∇Y : T 1
0 (M) 3 X −→ ∇XY ∈ T 1

0 (M) then ∇Y is a
linear map on T 1

0 (M) i.e. it is a tensor filed T 1
1 (M).

Covariant derivative of tensors fields

If we have tensor filed t ∈ T v
c (M) then the covariant derivative of

that tensor filed in the direction of the base vector ∂
∂xc can be

defined in the following way:

(∇ ∂
∂xc

t)i1,...,ivj1,...,jc
= t i1,...,iv

j1,...,jc ;c
=

=
∂t

i1,...,iv
j1,...,jc

∂xc +

+
v∑

m=1

∑
d

Γim
dct

i1,...,im−1,d ,im+1,...,iv
j1,...,jc

−

−
c∑

n=1

∑
p

Γp
jnc

t i1,...,iv
j1,...,jn−1,p,jn+1,...,jc

(103)

As we can see covariant derivative is a function

∇(.)(.) : T 1
0 (M)× T v

c (M) 3 t −→ ∇v t ∈ T v
c (M) (104)

Lie derivative (Lie derivative of scalar filed)
If we have a function f : M −→ R and the vector filed
X =

∑
i

X igi , then we can define the Lie derivative of the function

f in the direction of the vector filed X in the following way:

LX f (p) = df [X (p)] =
∑

i

∂f (p)

∂x i
X i (p) ∈ R (105)

where df is exterior derivative of the 0-form f .
The following set of relation holds:

d
dt F

∗
t f (p) = d

dt f (Ft(p)) = df (Ft(p)) d
dt Ft(p) =

= df (Ft(p))X (Ft(p)) = LX f (Ft(p)) = F ∗t LX f
(106)

As we can see Lie derivative is an operation from the space T 0
0 (M)

to the space T 0
0 (M)

L : T 1
0 (M)× T 0

0 (M) 3 (X , v) −→ LX (v) =
∑

i

∂v i

∂x i
X i ∈ T 0

0 (M)

(107)

Lie derivative of vector filed
If we have two vector field X , Y ∈ T 1

0 (M), then

LXY = [X ,Y] = (X∇)Y − (Y∇)X =
∑

ij

(
X i ∂Y j

∂x i
− Y i ∂X j

∂x i

)
gj

(108)
If the vector filed X has the flow Flt i.e.

d

dt
Flt(t) = X for t = 0 (109)

If we have the vector field Y then

d

dt
FX∗

t (Y) = LXY for t = 0 (110)

It is possible to rewrite this expression in the following form:

LXY (x) = lim
t−→0

(FX∗
t Y)(x)− FX∗

0 Y (x)

t
for t = 0 (111)

Lie derivative of vector filed

As we can see Lie derivative of vector filed is a function from the
space T 1

0 (M) to the space T 1
0 (M).

As we can see Lie derivative is an operation from the space T 1
0 (M)

to the space T 1
0 (M)

L : T 1
0 (M)× T 1

0 (M) 3 (X ,Y) −→ LXY ∈ T 1
0 (M) (112)

Lie derivative of tensor filed

Lie derivative in coordinates can be defined in the following way:

(LX t)i1...ivj1...jc
=

=
∑
k

∂t
i1...iv
j1...jc

∂xk X k−

−
v∑

m=1

∑
p

∂X im

∂xp t
i1,...,im−1,p,im+1,...,iv
j1...jc

+

+
c∑

n=1

∑
q

∂X q

∂x jn t i1...iv
j1,...,jn−1,q,jn+1,...,jc

(113)

As we can see Lie derivative is the following function

L : T 1
0 (M)× T v

c (M) 3 (X , t) −→ LX t ∈ T v
c (M) (114)

Gradient (spatial gradient of scalar fields)

In cartesian coordinate system gradient is defined as the following
vector:

grad(fcartesian) = ∇fcartesian =
∑

i

∂fcartesian
∂xi

ei (115)

In curvilinear coordinate system

grad(fcurvilinear) = ∇fcurvilinear =
∑

i

∂fcurvilinear

∂xi
g i ∈ T 0

1 (M)

(116)
Where g i is a vector of (dual) base in the space T 0

1 (M). As we
can see gradient is a covariant vector. Using this definition the
gradient is a function from T 0

0 (M) to T 0
1 (M)

∇ : T 0
0 (M) 3 v −→ ∇v =

∑

i

∂v

∂x i
g i ∈ T 0

1 (M) (117)

Gradient (spatial gradient of scalar fields)
In some books the gradient is defined as a dual vector to df and it
is element of the space T 1

0 (M)

(df)] = grad(fcartesian) ∈ T 1
0 (M) (118)

[grad(f)][= dfcartesian ∈ T 0
1 (M) (119)

In general curvilinear coordinate systems we have:

grad(fcurvilinear) = ∇fcurvilinear =

=
∑
ij

g ij ∂f
∂xi

∂
∂xj

=
∑
ij

g ij√gjj
∂f
∂xi

(
1√
gjj

∂
∂xj

)
=

=
∑
ij

g ij√gjj
∂f
∂xi

ej ∈ T 1
0 (M)

(120)

In orthogonal coordinate systems we have:

grad(fcurvilinear) = ∇fcurvilinear =

=
∑
ij

g ij ∂f
∂xi

∂
∂xj

=
∑
ij

g ij√gjj
∂f
∂xi

(
1√
gjj

∂
∂xj

)
=

=
∑
i

g ii√gii
∂f
∂xi

ei =
∑
i

1
gii

√
gii

∂f
∂xi

ei =
∑
i

1√
gii

∂f
∂xi

ei ∈ T 1
0 (M)

(121)

Gradient of vector fields

grad(v) =
dv

dx
=

∑

ij

(
dv i

dx j
+

∑

k

Γi
kjv

k

)
gi ⊗ g j (122)

It is possible to define gradient using covariant derivative:

grad(v) = ∇v =
dv

dx
=

∑

ij

v i
;jgi ⊗ g j (123)

As we can see gradient of the vector filed T 1
0 (M) is a tensor filed

T 1
1 (M).

∇ : T 1
0 (M) 3 v −→ ∇v ∈ T 1

1 (M) (124)

Gradient of tensor fields

Gradient of tensor field t ∈ T v
c (M) is a tensor filed ∇t ∈ T v

c+1(M)

∇ : T v
c (M) 3 t −→ ∇t ∈ T v

c+1(M) (125)

In coordinates this operation can be described in the following way:

∇t = ∇
(

∑
i1...ic ,j1...jv

t j1...jv
i1...ic

gj1 ⊗ ...⊗ gjv ⊗ g j1 ⊗ ...⊗ g jc

)
=

=
∑

i1,...,ic ,j1,...,jv ,k

(
t j1...jv
i1...ic

)
;k

gj1 ⊗ ...⊗ gjv ⊗ g j1 ⊗ ...⊗ g jc ⊗ gk

(126)

Derivative of functions with tensor arguments
Let us consider the function f : T v

c (M) 3 t → f (t) ∈ R.
Differential of such function is defined in the following way:

df (t, dt) = ∇f (t) · dt (127)

If t ∈ T v
c (M) then

The gradient of the function the the f : T v
c (M) 3 t → f (t) ∈ R

i.e.

∇f (t) =
∑

i1,...,ic ,j1,...,jv

∂f (t)

∂t i1,...,ic
j1,...,jv

g i1 ⊗ ...⊗ g iv ⊗ gj1 ⊗ ...⊗ gjc (128)

is a function ∇f : T v
c (M) 3 t → f (t) ∈ T c

v (M) .

∇f : T v
c (M) 3 t → ∇f (t) ∈ T c

v (M) (129)

∇ : C 1(T v
c (M), R)× T v

c (M) 3 (f , t) → ∇f (t) ∈ T c
v (M) (130)

df : T v
c (M)× T v

c (M) 3 (t, dt) → ∇f (t) · dt ∈ R (131)

d : C 1(T v
c (M), R)× T v

c (M)× T v
c (M) 3 (t, dt) →

→ df (r , dt) = ∇f (t) · dt ∈ R
(132)

Derivative of functions with tensor arguments

If the function f is tensor-valued

f : T v
c (M) 3 t → f (t) ∈ T p

q (M) (133)

then the gradient is a function:

∇f : T v
c (M) 3 t → ∇f (t) ∈ T p+c

q+v (M) (134)

∇ : C 1(T v
c (M), T p

q (M))× T v
c (M) 3 (f , t) → ∇f (t) ∈ T p+c

q+v (M)
(135)

The differential is a function:

df : T v
c (M)× T v

c (M) 3 (t, dt) → ∇f (t) · dt ∈ T p
q (M) (136)

d : C 1(T v
c (M), T p

q (M))× T v
c (M)× T v

c (M) 3 (t, dt) →
→ df (r , dt) = ∇f (t) · dt ∈ T p

q (M)
(137)

Exterior derivative

Exterior derivative is a function

d : T 0
k (M) ⊃ Ωk(M) 3 ω −→ dω ∈ Ωk+1(M) ⊂ T 0

k+1(M) (138)

Let U ⊂ M, exterior derivative has the following properties.
1) If α ∈ Ωk(U), β ∈ Ωl(U)

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ (139)

2) If fcurvilinear ∈ F1(U) = Ω0(U) then:

dfcurvilinear =
∑

i

∂fcurvilinear

∂xi
dx i (140)

3) d2 = d ◦ d = 0

Exterior derivative

Let α ∈ Ωk(U). In coordinates we can express the form α in the
following way:

α =
∑

i1<...<ik

αi1...ik dx i1 ∧ ... ∧ dx ik (141)

then the exterior derivative has the following form

dα =
∑

i<i1<...<ik

∂αi1...ik

∂x i
dx i ∧ dx i1 ∧ ... ∧ dx ik (142)

The codifferential
The exterior derivative and the Hodge star operator enable us to
introduce the following linear operator δ.

Theorem
The codifferential

δ : Ωk+1(M) → Ωk(M) (143)

is defined by δα = 0 where α ∈ Ω0(M) = T 0
0 (M) and on k + 1

forms by β ∈ Ωk+1(M)

δβ = (−1)nk+1+Ind(g) ? d ? β (144)

The codifferential is the adjoint of the exterior derivative, in that

(δα, β) = (α, dβ) (145)

where

(α, β) =

∫

M

〈α, β〉dV (146)

Divergence
Divergence is a function div : T 1

0 (M) −→ T 0
0 (M) and can be

defined as
div(X) = ?(d(?(X)[)) (147)

That formulation is valid only in the case when ? ? α = α. In
general the formula for divergence is the following

div(X) = (−1)n(p−1) ? (d(?(X)[)) (148)

where n is a dimension of base space and X ∈ T p
0 (M). In the index

notation we will have:

div(X) = ∇ · X =
∑

i

X i
;i (149)

That definition can be also written in the following way:

div(X) = tr (∇X) = ∇X : 1 (150)

where 1 =
∑
ij

δi
jgi ⊗ g j ∈ T 1

1 (M) and ”:” is double contraction

operator.

Divergence
There is also the following definition of divergence operator.

divg (X) = −δ(X [) (151)

where δ is codifferential operator.
Divergence can be defined also as a formal scalar product of
gradient and vector field

div(v) = ∇ · v =

(∑
i
(.);ig

i

)
· (∑

j
v jgj) =

=

(∑
i
(.);ig

i

)
· (∑

j
v jgj) =

∑
ij

v j
;ig

i · gj =

=
∑
ij

v j
;iδij =

∑
i

v i
;i

(152)

It can be also shown that the following relation holds

div(X) =
∑

i

1√
g

∂

∂x i

(√
gX i

)
(153)

Divergence

If ω is volume vector form and X is a vector filed then divergence
can be defined using Lie derivative

LXω = div(X)ω (154)

Where LXω is a Lie derivative of the form ω in the direction of the
vector field X .
Divergence of tensor field t ∈ T v

c (M) can be defined using the
formula (150)

div(t) = tr (∇t) = ∇X : 1 (155)

Then divergence is clearly a function from T v
c (M) to T v−1

c (M)

div : T v
c (M) 3 t −→ div(t) ∈ T v−1

c (M) (156)

Curl
Curl operator can be defined in the following way

curl(X) = (∗(d(X [)))] (157)

In coordinates curl can be expressed in the following way

curl(X) = ∇× X =
∑

ijk

εijkXk;jgi (158)

Let’s define third order permutation tensor

E (3) =
∑

ijk

εijkei ⊗ ej ⊗ ek (159)

where ei are the basis vectors in the cartesian coordinate system.

curl(X) = E (3) : (∇X)T (160)

As we can see the curl is an operation from the vector space
T 1

0 (M) to the vector space T 1
0 (M)

curl : T 1
0 (M) 3 X → curl(X) ∈ T 1

0 (M) (161)

Laplacian

The Laplacian in curvilinear coordinate system can be calculated in
the following way:

∆fcurvilinear =
1√
g

∑

ij

∂

∂x i

(
g ij√g

∂fcurvilinear

∂xj

)
(162)

Laplacian can be defined superposition of div and grad = ∇. If
u ∈ T 0

0 (M).
∆u = div(∇u) (163)

As we can see Laplacian is a function from T 0
0 (M) to T 0

0 (M).

∆ : T 0
0 (M) 3 u −→ ∆u ∈ T 0

0 (M) (164)

It is possible to define Laplacian as

∆f = ?d ? df (165)

Laplacian

It is also possible to define Laplace-deRahm operator.

∆ : Ωk(M) → Ωk(M) (166)

where
∆ = dδ + δd (167)

For example if f ∈ Ω0(M) = T 0
0 (M).

∆f = dδf + δdf = δdf = −div(grad(f)) = −∇2f (168)

where ∇2 is Laplace-Beltrami operator.

Conclusions

I Using algebraic techniques for software structuring purposes
gives more mature software structures which are less prone to
redesigns than conventionally developed systems, providing a
general framework for solvers of most kinds of PDEs, with

I a high degree of reuse even within the library itself, so that
advanced concepts are defined by combinations of basic
modules, which provides the ability that

I a numerical solution strategy may be replaced with another
just by substituting a few modules and without changing the
system structure,

I prototype code development times are reduced since central
numerical modules are reused rather than readapted, and only
a few minor modules need to be replaced when porting to and
between HPC architectures.

Figure: Thank you

