Colloquium

Carlos De La Mora

The University of Texas at El Paso

Friday, October 16, 2015 at 3 pm in Bell Hall 143

L-functions here and there

Let \mathbb{F} be a number field and let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F} . Given ρ a representation of $\operatorname{Gal}(\overline{\mathbb{F}}/F)$ we can form its Artin *L*-function. It is known that Artin's *L*-functions have a meromorphic continuation to the complex plane and that they have an Euler product. Since Artin's *L*-functions have an Euler product we can study one prime at the time. Indeed, to each prime ideal we can attach two canonical complex functions, these are the local *L*-factor and the local epsilon factor. We now change gears and consider *G* to be a connected reductive group defined over *F*, \mathbb{A} be the ring of adeles over \mathbb{F} and let π be an automorphic representation of $G(\mathbb{A})$. If *V* is the set of valuations of \mathbb{F} , for $v \in V$ we can complete \mathbb{F} , we denote by \mathbb{F}_v the completion of \mathbb{F} with respect to *v*. It is known that $\pi = \bigotimes'_{v \in V} \pi_v$ where π_v is a smooth representation of $G(\mathbb{F}_v)$ one should be able to attach two canonical complex functions, these should be a local *L*-factor and an epsilon factor. Moreover if ρ is a representation of $\operatorname{Gal}(\overline{\mathbb{F}}/F)$ there should be a local *L*-factor and an epsilon factor. Moreover if ρ is a representation of $\operatorname{Gal}(\overline{\mathbb{F}}/F)$ there should exist an automorphic cuspidal representation π of $G(\mathbb{A})$ such that the local *L*-factor and epsilon factor of ρ and the local *L*-factor and epsilon factor of π agree for each valuation. The aim of this talk is to explain all the above in more detail.