6) Use the disk method to verify that the volume of a right circular cone is \(\frac{1}{3} \pi r^2 h \), where \(r \) is the radius of the base and \(h \) is the height.

Solution: Refer to the drawing at right. The cone has height \(h \) and radius \(r \). We draw a representative disk that has radius \(R \) and width \(\Delta y \). The height of our representative disk is \(y \). The volume of the representative disk is \(V_{\text{disk}} = \pi R^2 \Delta y \). We need to have \(R \) in terms of \(y \), so we must find the relationship between \(R \) and \(y \), that is, find \(R(y) \). As the drawing suggests, \(R \) is a linear function of \(y \), so \(R(y) = my + b \). We know that \(R(0) = r \) and \(R(h) = 0 \). Thus, \(m = \frac{\Delta R}{\Delta y} = \frac{r - 0}{0 - h} = -\frac{r}{h} \). The function is \(R(y) = -\left(\frac{r}{h}\right)y + r \).

The total volume is

\[
V_{\text{total}} = \pi \int_0^h [R(y)]^2 dy = \pi \int_0^h \left[-\left(\frac{r}{h}\right)y + r\right]^2 dy
\]

\[
= \pi \int_0^h \left(\frac{r}{h}\right)^2 y^2 - \left(\frac{2r^2}{h}\right)y + r^2 \right) dy = \pi \left[\frac{1}{3} \left(\frac{r^2}{h^2}\right)y^3 - \left(\frac{r^2}{h}\right)y^2 + r^2y\right]_0^h
\]

\[
= \pi \left[\frac{r^2}{3h^2} h^3 - \left(\frac{r^2}{h}\right)h^2 + r^2h \right] = \pi \left[\frac{1}{3} r^2h - r^2h + r^2h \right] = \frac{1}{3} \pi r^2 h
\]