Section 3.4

Spanning Sets
Let W be a subspace of \mathbb{R}^n, and let $S = \{w_1, \ldots, w_m\}$ be a subset of W. We say that S is a spanning set for W, or simply that S spans W, if every vector w in W can be expressed as a linear combination of vectors in S:

$$w = a_1w_1 + a_2w_2 + \cdots + a_mw_m.$$

Definition
Let W be a nonzero subspace of \mathbb{R}^n. A basis for W is a linearly independent spanning set for W.

Uniqueness of Representation
Let $B = \{v_1, v_2, \ldots, v_p\}$ be a basis for a subspace W of \mathbb{R}^n, and let x be a vector in W. Because B is a spanning set, we know that there are scalars a_1, a_2, \ldots, a_p such that

$$x = a_1v_1 + a_2v_2 + \cdots + a_pv_p.$$

Then the representation of x is unique.

Finding a Basis
a) A spanning set $S = \{v_1, \ldots, v_m\}$ for a subspace W is given.

b) Solve the vector equation $x_1v_1 + \cdots + x_mv_m = \theta$.

c) If the equation has only the trivial solution $x_1 = \cdots = x_m = 0$, then S is a linearly independent set and hence is a basis for W.

d) If the equation has a nontrivial solutions, then there are unconstrained variables. For each x_j that is designated as an unconstrained variable, delete the vector v_j from the set S. The remaining vectors constitute a basis for W.

Theorem
If a nonzero matrix A is row equivalent to the matrix B in echelon form, then the nonzero rows of B form a basis for the row space of A.

Finding a Basis Using the Row Space
a) A spanning set $S = \{v_1, \ldots, v_m\}$ for a subspace W of \mathbb{R}^n is given.

b) Let V be the $n \times m$ matrix $V = [v_1, \ldots, v_m]$. Use elementary row operations to transform V^T to a matrix B^T in echelon form.

c) The nonzero columns of B are a basis for W.
Problem 1. Let W be the subspace of \mathbb{R}^4 consisting of vectors of the form

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \]

Find a basis of W when the components of \mathbf{x} satisfy the given conditions.

\begin{align*}
&x_1 + x_2 - x_3 + x_4 = 0 \\
&x_2 - 2x_3 - x_4 = 0
\end{align*}

Determine if \mathbf{x} is in W. If \mathbf{x} is in W, then express \mathbf{x} as a linear combination of the basis vectors.

\[\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 7 \\ 8 \\ 3 \\ 2 \end{bmatrix} \]

Problem 2. For the following matrices.

a) Find a matrix B in reduced echelon form such that B is row equivalent to the given matrix A.

b) Find a basis for the null space of A.

c) Find a basis for the range of A that consists of columns of A. For each column, A_j, of A that does not appear in the basis, express A_j as a linear combination of the basis vectors.

d) Exhibit a basis for the row space of A.

e) Use the technique of the row space to find a basis for the range of A.

\[A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 3 & -1 \\ 2 & 2 & 0 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix} \]

Problem 3. In the following exercises for the given set S:

a) Find a subset S that is a basis for $\text{Sp}(S)$ using the first technique to find a basis.

b) Find a basis for $\text{Sp}(S)$ using the second technique to find a basis.

\[S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \]

\[S = \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} \right\} \]

Homework: Read Section 3.4, do 1, 3, 7, 9, 11, 15, 17, 23, 25, 33.