Theorem
Let \(W \) be a subspace of \(\mathbb{R}^n \), and let \(B = \{ w_1, w_2, \ldots, w_p \} \) be a spanning set for \(W \) containing \(p \) vectors. Then any set of \(p + 1 \) or more vectors in \(W \) is linearly dependent.

Corollary
Let \(W \) be the subspace of \(\mathbb{R}^n \), and let \(B = \{ w_1, w_2, \ldots, w_p \} \) be a basis for \(W \) containing \(p \) vectors. Then every basis for \(W \) contains \(p \) vectors.

Definition
Let \(W \) be a subspace of \(\mathbb{R}^n \). If \(W \) has a basis \(B = \{ w_1, w_2, \ldots, w_p \} \) of \(p \) vectors, then we say that \(W \) is a subspace of dimension \(p \), and we write \(\text{dim}(W) = p \).

Theorem
Let \(W \) be a subspace of \(\mathbb{R}^n \) with \(\text{dim}(W) = p \).

a) Any set of \(p + 1 \) or more vectors in \(W \) is linearly dependent.

b) Any set of fewer than \(p \) vectors in \(W \) does not span \(W \).

c) Any set of \(p \) linearly independent vectors in \(W \) is a basis for \(W \).

d) Any set of \(p \) vectors that spans \(W \) is a basis for \(W \).

Rank of a Matrix
For an \(m \times n \) matrix, the dimension of the null space is called the nullity of \(A \), and the dimension of the range of \(A \) is called the rank of \(A \).

Theorem
If \(A \) is an \(m \times n \) matrix, then the rank of \(A \) is equal to the rank of \(A^T \).

Corollary
If \(A \) is an \(m \times n \) matrix, then the row space and the column space of \(A \) have the same dimension.

Remark
If \(A \) is an \(m \times n \) matrix, then \(n = \text{rank}(A) + \text{nullity}(A) \).

Theorem
An \(m \times n \) system of linear equations, \(Ax = b \), is consistent if and only if, \(\text{rank}(A) = \text{rank}([A|b]) \).

Theorem
An \(n \times n \) matrix \(A \) is nonsingular if and only if the rank of \(A \) is \(n \).

Problem 1. Determine whether the given set is a basis for \(\mathbb{R}^3 \).

a) \(S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \)

b) \(S = \{ \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \} \)

\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}.
\]
Problem 2. W is a subspace of \mathbb{R}^4 consisting of vectors of the form $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$. Determine $\dim(W)$ when the components of x satisfy the given conditions.

a) $x_1 + x_3 - 2x_4 = 0$
 $x_2 + 2x_3 - 3x_4 = 0$

b) $x_1 - x_2 = 0$
 $x_2 - 2x_3 = 0$
 $x_3 - x_4 = 0$

Problem 3. Find a basis for $N(A)$ and give the nullity and the rank of A.

$$A = \begin{bmatrix} -1 & 2 & 0 & 0 \\ 2 & -5 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 2 & 0 & 5 \\ 1 & 3 & 1 & 7 \\ 2 & 3 & -1 & 9 \end{bmatrix}$$

Problem 4. Find a basis for $R(A)$ and give the nullity and the rank of A.

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 4 & 2 & 4 \\ 2 & 1 & 5 & -2 \end{bmatrix}$$

Problem 5. Let W be a subspace, and let S be a spanning set for W. Find a basis for W, and calculate $\dim(W)$.

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \\ 1 \\ 2 \\ -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 1 \\ -2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix} \right\}$$

Problem 6. Let W be a subspace of \mathbb{R}^4 defined by $W = \{ x : v^T x = 0 \}$. Calculate $\dim(W)$, where

$$v = \begin{bmatrix} 1 \\ 2 \\ -3 \\ -1 \end{bmatrix}$$

Problem 7. For each of the following, determine the largest possible value for the rank of A and the smallest possible value for the nullity of A.

a) A is 3×3

b) A is 3×4

c) A is 5×4

Homework: Read Section 3.5, do 3, 5, 7, 9, 11, 13, 17, 23, 25, 27(a), 29, 31.