The Eigenvalue Problem
For an \(n \times n \) matrix \(A \), find all scalars \(\lambda \) such that the equation
\[
Ax = \lambda x
\]
has a nonzero solution, \(x \). Such a scalar \(\lambda \) is called an eigenvalue of \(A \), and any nonzero \(n \times 1 \) vector \(x \) satisfying the equation above is called an eigenvector corresponding to \(\lambda \).

Problem 1. Find the eigenvalues and the eigenvectors for the given matrix.

a) \[A = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \]

b) \[A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \]

Problem 2. Show that there is not real scalar \(\lambda \) such that \(A - \lambda I \) is singular.

a) \[A = \begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix} \]

b) \[A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \ b \neq 0 \]

Problem 3. Let \(A \) be a \(2 \times 2 \) matrix. Show that \(A \) and \(A^T \) have the same set of eigenvalues.

Homework: Read Section 4.1, do 1-17 (odd).