Determinant for 2×2 Matrices
Let A be the 2×2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The determinant of A, denoted by $\det(A)$, is the number

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Determinant of 3×3 Matrices
Let A be the 3×3 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

The determinant of A is the number $\det(A)$, where

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{12} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}.$$

Minor
Let $A = (a_{ij})$ be an $n \times n$ matrix. The $(n-1) \times (n-1)$ matrix that results from removing the rth row and sth column from A is called a minor of a matrix of A and is designated by M_{rs}.

Cofactor
The numbers A_{ij} defined by

$$A_{ij} = (-1)^{i+j}\det(M_{ij})$$

are known as a cofactor, where M_{ij} is the minor of the ij-th entry a_{ij}.

The Determinant of an $n \times n$ matrix
Let $A = (a_{ij})$ be an $n \times n$ matrix. The determinant of A is the number $\det(A)$, where

$$\det(A) = a_{11}\det(M_{11}) - a_{12}\det(M_{12}) + \ldots + (-1)^{n+1}a_{1n}\det(M_{1n}) = \sum_{j=1}^{n} (-1)^{j+1}a_{1j}\det(M_{1j}).$$

Theorem
Let $A = (a_{ij})$ be an $n \times n$ matrix with minor matrices M_{ij} and cofactors $A_{ij} = (-1)^{i+j}\det(M_{ij})$. Then

$$\det(A) = \sum_{j=1}^{n} a_{ij}A_{ij} \text{ (i-th row expansion)}$$
$$\det(A) = \sum_{i=1}^{n} a_{ij}A_{ij} \text{ (j-th column expansion)}$$

Theorem
Let A and B be $n \times n$ matrices. Then

$$\det(AB) = \det(A)\det(B).$$
Theorem
Let A be an $n \times n$ matrix. Then

$$A \text{ is singular if and only if } \det(A) = 0.$$

Theorem
Let $T = (t_{ij})$ be an $n \times n$ triangular matrix. Then

$$\det(T) = t_{11}t_{22}\ldots t_{nn}.$$

Problem 1. Calculate the determinant of the given matrix. State whether the matrix is singular or nonsingular.

\[A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 2 \\ -1 & 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & -1 & 1 \\ -1 & 0 & 2 & -2 \\ 3 & -1 & 1 & 1 \\ 2 & 0 & -1 & 2 \end{bmatrix}. \]

Problem 2. Let A and B be $n \times n$ matrices. Give a proof of each of the following.

(a) If either A or B is singular, then AB is singular.

(b) If AB is singular, then either A or B is singular.

Problem 3. Suppose that A is an $n \times n$ nonsingular matrix. Show that $\det(A^{-1}) = 1/\det(A)$.

Problem 4. Evaluate the given determinant, where A and B are $n \times n$ matrices with $\det(A) = 3$ and $\det(B) = 5$.

(a) $\det(A^2B)$.

(b) $\det(AB^{-1}A^{-1}B^2)$.

Homework: Read Section 4.2, do 9, 13, 17, 19, 21, 27, 29.