Section 4.5

Eigenspaces and Geometric Multiplicity
Let A be an $n \times n$ matrix. If λ is an eigenvalue of A, then:

a) The null space of $A - \lambda I$ is denoted by E_λ and is called the eigenspace of λ.

b) The dimension of E_λ is called the geometric multiplicity of λ.

Defective Matrices
Let A be an $n \times n$ matrix. If there is an eigenvalue λ of A such that the geometric multiplicity of λ is less than the algebraic multiplicity of λ, then A is called a defective matrix.

Theorem
Let u_1, u_2, \ldots, u_k be eigenvectors of an $n \times n$ matrix A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. That is,

$$Au_j = \lambda_j u_j \quad \text{for } j = 1, 2, \ldots, k; \ k \leq n$$

$$\lambda_i \neq \lambda_j \text{ for } i \neq j; \ 1 \leq i, j \leq k.$$

Then $\{u_1, u_2, \ldots, u_k\}$ is a linearly independent set.

Corollary
Let A be an $n \times n$ matrix. If A has n distinct eigenvalues, then A has a set of linearly independent eigenvectors.

Problem 1. Find the eigenvalues and the eigenvectors for the given matrix, and find a basis for the eigenspace E_λ. Determine the algebraic and geometric multiplicity of λ.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 6 & 2 \\ 0 & 5 & -6 \\ 1 & 0 & -2 \end{bmatrix}, \quad p(t) = -(t + 4)(t - 3)^2$$

$$C = \begin{bmatrix} 1 & -1 & -1 & -1 \\ -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{bmatrix}, \quad p(t) = (t + 2)(t - 2)^3.$$
Problem 2. If a vector x is a linear combination of eigenvectors of a matrix A, then it is easy to calculate the product $y = A^kx$ for any positive integer k. For instance, suppose that $Au_1 = \lambda_1 u_1$ and $Au_2 = \lambda_2 u_2$, where u_1 and u_2 are nonzero vectors. If $x = a_1 u_1 + a_2 u_2$, then $y = A^k x = A^k(a_1 u_1 + a_2 u_2) = a_1 A^k u_1 + a_2 A^k u_2 = a_1 (\lambda_1)^k u_1 + a_2 (\lambda_2)^k u_2$. Find $A^{10} x$, where

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 5 & -2 \\ 0 & 6 & -2 \end{bmatrix} \text{ and } x = \begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}$$

Problem 3. Let P be an idempotent matrix ($P^2 = P$). Show that the only eigenvalues of P are $\lambda = 0$ and $\lambda = 1$.

Problem 4. Let u be a vector in \mathbb{R}^n such that $u^T u = 1$. Show that the $n \times n$ matrix $P = uu^T$ is an idempotent matrix.

Problem 5. Verify that if Q is idempotent, then so is $I - Q$. Also verify that $(I - 2Q)^{-1} = I - 2Q$.

Homework: Read Section 4.5, do 1, 5, 9, 11, 13, 17, 19, 21, 23, 25.