Math 2313, Test II

Name ___________________________

1. If \(f(x, y) = \sin(xy + x^2 + y^2) \),
 a. Find the gradient of \(f \) at \((0, \sqrt{\pi})\).
 answer: \((-\sqrt{\pi}, -2\sqrt{\pi})\)

 b. Find the derivative of \(f \) at \((0, \sqrt{\pi})\) in the direction of the vector \(< 3, -4 >\).
 answer: \(\sqrt{\pi}\)

 c. What is the maximum directional derivative, at the point \((0, \sqrt{\pi})\)?
 answer: \(\sqrt{5\pi}\)

2. If \(f(x, y, z) = e^{x^2 y z^3} \) find \(f_{xy} \).

 answer: \((2xz^3 + 2x^3yz^6)e^{x^2yz^3}\)
3. A cylinder has radius \(r = 6 \) and height \(h = 10 \), and the radius and height are changing at the rate of \(\frac{dr}{dt} = 0.1, \frac{dh}{dt} = -0.2 \). How fast is the surface area changing (\(\frac{dA}{dt} \)), given that the surface area is \(A = 2\pi(r^2 + rh) \).

answer: \(2\pi \)

4. If \(f(x, y) = x^3 - 12xy + y^3 \) find all critical points and classify each as a maximum, minimum or saddle point.

answer: \((4,4)\) is a minimum, \((0,0)\) is a saddle point

5. Find the equation of the tangent plane to the surface \(z = x^2 - y^2 \), at the point \((3,2,5)\).

answer: \(6x - 4y - z = 5 \)