1. If \(f(x, y, z) = e^{2x+2y-z^2} \),
 a. Find the gradient of \(f \) at \((1, 1, 2)\).
 answer: \((2, 2, -4) \)

 b. Find the derivative of \(f \) at \((1, 1, 2)\) in the direction of the vector
 \(<0, 3, 4>\).
 answer: \(-2\)

 c. In what direction is the directional derivative largest, at the point
 \((1, 1, 2)\)?
 answer: \((2, 2, -4) \)

 d. Find the equation of the tangent plane to the surface \(f(x, y, z) = 1 \)
 at \((1, 1, 2)\).
 answer: \(2x + 2y - 4z + 4 = 0 \)

2. If \(f(x, y) = e^{xy} \) find \(f_{xx} + f_{yy} \).

 answer: \((x^2 + y^2)e^{xy} \)
3. A cylinder initially has radius \(r = 5 \) and height \(h = 8 \), then the radius is increased to 5.1 and the height is decreased to 7.8. Given that the surface area is \(A = 2\pi(r^2 + rh) \), calculate both

a. The exact change in surface area, \(\Delta A \), and

answer: 4.9637

b. The approximate change in surface area, \(dA \).

answer: 5.0265

4. If \(f(x,y) = x^3 - 6xy + y^3 \), find all critical points and classify each as a local minimum, local maximum, or saddle point.

answer: (0, 0) is saddle point, (2, 2) is local minimum.

5. If \((U_x, U_y, U_z) = (3, 11, -1) \) at the point \((-1, 0, 0)\), which has spherical coordinates \(\rho = 1, \phi = \frac{\pi}{2}, \theta = \pi \), find \(U_\theta \) at this point. For spherical coordinates,

\[
\begin{align*}
x & = \rho \sin(\phi)\cos(\theta) \\
y & = \rho \sin(\phi)\sin(\theta) \\
z & = \rho \cos(\phi)
\end{align*}
\]

answer: \(-11\)