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This short document is an example of an induction proof. Our goal is to
rigorously prove something we observed experimentally in class, that every
fifth Fibonacci number is a multiple of 5.

As usual in mathematics, we have to start by carefully defining the objects
we are studying.

Definition. The sequence of Fibonacci numbers, F0, F1, F2, . . ., are de-
fined by the following equations:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

We now have to prove one of our early observations, expressing Fn+5 as
a sum of a multiple of 5, and a multiple of Fn.

Lemma 1. If n ≥ 0 is an integer, then

Fn+5 = 5Fn+1 + 3Fn.

Proof. Repeatedly applying the recursion formula for Fibonacci numbers,

Fn+5 = Fn+4 + Fn+3 = (Fn+3 + Fn+2) + Fn+3

= 2Fn+3 + Fn+2 = 2(Fn+2 + Fn+1) + Fn+2

= 3Fn+2 + 2Fn+1 = 3(Fn+1 + Fn) + 2Fn+2

= 5Fn+1 + 3Fn.
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Theorem 2. The Fibonacci number F5k is a multiple of 5, for all integers
k ≥ 1.

Proof. Proof by induction on k. Since this is a proof by induction, we start
with the base case of k = 1. That means, in this case, we need to compute
F5×1 = F5. But, it is easy to compute that F5 = 5, which is a multiple of 5.

Now comes the induction step, which is more involved. In the induction
step, we assume the statement of our theorem is true for k = m, and then
prove that is true for k = m + 1. So assume F5m is a multiple of 5, say

F5m = 5p

for some integer p. We now need to show that F5(m+1) is a multiple of 5. But

F5(m+1) = F5m+5 = 5F5m+1 + 3F5m by Lemma 1

= 5F5m+1 + (3× 5p) by induction

= 5(F5m+1 + 3p), by algebra

which is a multiple of 5 (since F5m+1 and p are integers).
We have shown that if F5m is a multiple of 5, then F5(m+1) is also a multiple

of 5. In other words, we have shown that if the statement of our theorem is
true for k = m, then the statement of our theorem is true for k = m+1. That
means we have proved the induction step, and thus completed our proof.
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