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Act I

Setting the scene: Trees from flow diagrams



Metric holomorphic polynomial field with simple zeros

Phase portrait of X (z) = 2i − iz − 2iz4 + iz5 ∂
∂z
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Complex rotation

Phase portrait of X (z)(12 − i)



Complex rotation

Phase portrait of X (z)(−1 + i
2)



Put it all together, and get a graph



Trees

So we are looking at unlabeled trees with black and white vertices

I no white vertices are adjacent to each other

I each white vertex is adjacent to at least three black vertices

I no restriction on neighbors of black vertices

We want to count such trees up to rotation (but not reflection)

Example

The first two are the same, but the third is different.
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Act II

Flashback: Counting (unlabeled) trees



How to grow different kinds of rooted trees, recursively

I Rooted trees:
I A = X · E (A),
I E stands for “set of”

I Ordered rooted tree:
I AL = X · L(AL)
I L stands for “linear order”

I Planar rooted trees:
I P = X + X · C (AL)
I C stands for “cyclic order”

Example



How to count different kinds of rooted trees (species)

Species and exponential generating functions

I Rooted trees:
I A = X · E (A),
I E stands for “set of”
I E (x) = ex

I Ordered rooted tree:
I AL = X · L(AL)
I L stands for “linear order”
I L(x) = 1

1−x

I Planar rooted trees:
I AP = X + X · C (AL)
I C stands for “cyclic order”
I C (x) = − log(1− x)

These give recursive equations we can solve.



Unrooting I: Center of tree

Definition
Center of a tree is the set of vertices v that minimize

max
u

d(u, v)

It is always either a single vertex, or an edge.

So this naturally
roots a tree at either a vertex or an edge.

Example
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Unrooting II: Dissymmetry theorem

Theorem (Dissymmetry)

A+ E2(A) = a +A2,

where a denotes unrooted trees and E2 is the species of sets with
exactly two elements.

Proof.
(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees
(unrooted) or ordered pair of trees.So we need isomorphism
between trees rooted at vertex or edge other than the center, with
ordered pairs of rooted trees.

←→

This lets us count unrooted (but still labeled) trees
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Isomorphism type (removing the labels)

Definition
Type generating series of species F is ordinary (non-exponential)
generating function of isomorphism types of F . But to actually
compute, we need:

F̃ (x) = ZF (x , x2, x3, . . .)

where ZF is the cycle index series (definition suppressed)

Example

ZC (x1, x2, x3, . . .) =
∞∑
k=1

φ(k)

k
log

1

1− xk

(others not so bad)



Act III

Return to the present day: Counting our trees



Black and white vertices, not at the root

Similar to ordered rooted trees, but now color-aware

Y1 = X1 · L(Y1 + Y2) Y2 = X2 · L≥2(X1 · L(Y1 + Y2))

Y3 = Y1 + Y2 = X1 · L(Y3) + X2 · L≥2(X1 · L(Y3))



Recursive equation

Y3 = Y1 + Y2 = X1 · L(Y3) + X2 · L≥2(X1 · L(Y3))

y3 = x1`+ x2
(x1`)

2

1− (x1`)

where ` = 1
1−y3 .

Simplifying,

x1 + x21 (x2 − 1)− (y3 − 1)2y3 − x1y
2
3 = 0.

Unique real root y3(x1, x2) =
2−x1

3 +(21/3(−1+4x1−x12))(
3

(
2−12x1+15x12+2x13−27x12x2+

√
(4(−1+4x1−x12)3+(2−12x1+15x12+2x13−27x12x2)2)

)1/3
)

− 1

3 21/3

(
2 − 12x1 + 15x12 + 2x13 − 27x12x2 +

√(
4
(
−1 + 4x1 − x12

)3 +
(
2 − 12x1 + 15x12 + 2x13 − 27x12x2

)2))1/3
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Dissymmetry again

Recall
A+ E2(A) = a +A2,

The same arguments apply. But now, paying attention to color,

A ≈ (X1 · (1 + C (Y3))) + (X2 · C≥3(X1 · L(Y3)))

E2(A) ≈ E2(Y1) + Y2 · Y1 = E2(Y3)− E2(Y2)

A2 ≈ Y 2
1 + 2Y1Y2 = Y 2

3 − Y 2
2

This can be stated more generally for “multi-sort” species.
(And then, to remove labels, again bring in cycle index series.)
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Act IV

Aftermath: Data and Specializations



Data

x1 + x21 + x31 + x2x
3
1 + 2x41 + 2x2x

4
1 + 3x51 + 5x2x

5
1 + x22 x

5
1 + 6x61 + 16x2x

6
1 +

5x22 x
6
1 + 14x71 + 48x2x

7
1 + 30x2x

7
1 + 2x32 x

7
1 + 34x81 + 164x2x

8
1 + 146x22 x

8
1 +

20x32 x
8
1 + 95x91 + 559x2x

9
1 + 693x22 x

9
1 + 175x32 x

9
1 + 7x42 x

9
1 + 280x101 +

1952x2x
10
1 + 3108x22 x

10
1 + 1254x32 x

10
1 + 95x42 x

10
1 + 854x111 + 6872x2x

11
1 +

13608x22 x
11
1 +7752x32 x

11
1 +1125x42 x

11
1 +19x52 x

11
1 +2694x121 +24520x2x

12
1 +

58200x22 x
12
1 +44112x32 x

12
1 +10108x42 x

12
1 +480x52 x

12
1 8714x131 +88006x2x

13
1 +

245322x22 x
13
1 + 235557x32 x

13
1 + 77580x42 x

13
1 + 7084x52 x

13
1 + 86x62 x

13
1 + · · ·

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 1 2 3 6 14 34 95 280 854 2694
1 0 0 1 2 5 16 48 164 559 1952 6872 24520
2 0 0 0 0 1 5 30 146 693 3108 13608 58200
3 0 0 0 0 0 0 2 20 175 1254 7752 44112
4 0 0 0 0 0 0 0 0 7 95 1125 10108
5 0 0 0 0 0 0 0 0 0 0 19 480
6 0 0 0 0 0 0 0 0 0 0 0 0



No white vertices

1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 2 3 6 14 34 95 280 854 2694 8714

Unlabeled plane trees



One white vertex

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 1 2 5 16 48 164 559 1952 6872 24520
Triangulations of an n-gon with exactly one internal vertex.
(Brown, 1964)

Both are circular orders of (at least three) Catalan-things (ordered
rooted trees or rooted triangulations).



One white vertex

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 1 2 5 16 48 164 559 1952 6872 24520
Triangulations of an n-gon with exactly one internal vertex.
(Brown, 1964)

Both are circular orders of (at least three) Catalan-things (ordered
rooted trees or rooted triangulations).



Minimal black vertices

1 2 3 4 5 6 7 8 9 10 11 12 13

0 1
1 0 0 1
2 0 0 0 0 1
3 0 0 0 0 0 0 2
4 0 0 0 0 0 0 0 0 7
5 0 0 0 0 0 0 0 0 0 0 19
6 0 0 0 0 0 0 0 0 0 0 0 0 86

Unlabeled 3-gonal cacti with n triangles. (Bóna, Bousquet,
Labelle, Leroux, 2000)
To get their graphs from ours in this case, connect all black vertices
adjacent to the same white vertex, remove all white vertices.
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