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OVERVIEW

T he eigenvalues of the combinatorial Lapla-
cian of the independence complexes of ma-
troids are integral and satisfy a Tutte-like re-
cursion.

These things are true for very few other simpli-
Cial complexes. Some natural operations, in-
cluding Alexander duality, preserve being in-
tegral and satisfying recursion. But Alexander
dual of a matroid is not a matroid!

Ed Swartz says: Steiner complexes general-
ize matroids, and are closed under Alexander
duality.

Conjecture: Laplacian eigenvalues of Steiner
complexes are integral, and satisfy the recur-
sion.



MATRQOIDS
(Examples for graphic matroids)

Ground set E: Edges of planar graph G.

Bases B: Spanning trees of G. (Maximal ind-
pendent sets.)

Independent sets 7. Forests of G. (Subsets of
bases.)

For all matroids, not just graphic: Indepen-
dence complex IN(M) of matroid M is simpli-
cial complex of independent sets. (Facets are
bases.)

Dual M*: Planar graph dual.




LAPLACIANS

C;, = CA,;, the :-dimensional R-chains of A
(R-linear combinations of i-dim’l faces of A)

0= 0;. C; — C;_1 usual signed boundary
d;i—1 = 0. C;_1 — C; coboundary.
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Cit1 = C; = Cie1

Let

Li(A) = 0,410,141 + 0;0;: C; — C;

be the -dimensional Laplacian of A.




EIGENVALUES OF LAPLACIANS
s;(A) = eigenvalues (w/multiplicity) of L;(A).

s integral for

e independence complex IN(M) of matroid
M (Kook-Reiner-Stanton, J. AMS '00)

e shifted complexes (D-Reiner, Trans. AMS
'02)

e chessboard complexes (Friedman-Hanlon,
J. Alg. Comb. '98)

e matching complexes of K, (Dong-Wachs,
Elec. J. Comb. '02)

e \What else??!



SPECTRAL RECURSION

Sar(t,q) == ¢ 3 T

t Aes(Li—1(IN(M)))
Tutte polyn. deletion-contraction recursion:

Tre = Tong—e + Tagje
B(M —e)={BeB:e& B} (r=r(M))
B(M/e)={B—e: BeB, ee B} (r=r(M)—-1)
Thm (KOOK).' Sy = qSM_e + thM/e
+(1 — g)(error term).

Conj(Kook-Reiner): error term = S yr_c rr/e)
where (M —e,M/e) = (IN(M —e),IN(M/e)) is
the ‘“relative complex” of IN(M — e) with all
the faces from IN(M/e) removed.

Thm: This is true, i.e.,
Sm = qSm—e t qtSnre + (1 = O)S(ar—e p/e)-
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MORE GENERALLY

Generalize deletion and contraction to arbi-
trary simplicial complex A.
A—-—e={FecA:egF}
Ale={F—e: FeA, ecF} =lkpae

Salt,g) =S¢ Y ¢

© o Aes(Li—1(A))
Thm: Spectral recursion holds for shifted com-
plexes A:

SA =a5a—+ atSn/e + (1 —a)Sa—c.n/e)

7



ALEXANDER DUAL

What else has integral Laplacian spectrum, and
satisfies the spectral recursion? Call such com-
plexes integral, and spectral, respectively.

One clue comes from duality: For matroids
and Tutte polynomial, Ty«(z,y) = Ty (y, ),
where B* = {F — B: B € B}.

complement A . ={FCFE: F&A}

Alexander dual AY := A*¢ = A%
={E—-F:F¢gA}

Thm: A integral (resp., spectral) iff AV inte-
gral (resp., spectral).



STEINER COMPLEXES
circuits C(M), minimally dependent sets.

cocircuits C*(M) = C(M*). (In graphic ma-
troids, “cutsets’”.)

port P(M,e) ={C —{e}:ec C,CeC(M)}
P*(M,e) ={C* —{e}: e€ C*,C* € C*(M)}

Steiner complex

S(M,e) ={F CE—{e}: PZ F,YP € P}

Generalizes matroids: S(M x e,e) = IN(M),
where x denotes free coextension



DUALITY, etc.

Steiner complexes closed under deletion, con-
traction, Alexander duality:
8(M7€) _f:S(M_f7e)

S(M,e)/f =S8(M/f,e)
S(M,e)V = S(M*,e)

P and P* are blocking clutters; each clutter
(anti-chain) is minimal for intersecting each of
the sets in the other clutter.

P(M*,e) = P*(M,e)

Conjecture: Steiner complexes are Laplacian
integral and spectral.
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