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Definitions as foundation of mathematics

▶ In class, definitions have to come first

▶ Definition-theorem-proof
▶ This is how we do math

▶ Prove theorems, analyze functions, solve equations, etc.

▶ In class, we might often say, “Let’s look up the definition”
▶ Example: Is 0 an even number?

▶ Even number: n = 2k, where k is an integer
▶ 0 = 2 × 0

▶ Is 0 an integer?
▶ Yes
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Mathematicians in the real world

▶ “Mathematician” includes all of us here

▶ Do you ever answer a question by “Define . . . ”?
▶ Jury deciding DWI case:

▶ what’s the definition of “intoxicated” (Jim Propp)

▶ “Is water wet?”

▶ “Are you short of breath while exercising?”

▶ Homeless (federal government definition has changed!)

▶ Middle-class (economics, politics)

▶ Obscenity (“I know it when I see it”–Justice Potter Stewart)

▶ Dependent (taxes)
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Keith Devlin proves his worth – with a definition

▶ Keith Devlin, Stanford

▶ MAA column about mathematical thinking

▶ consulting for federal government about national security,
post-9/11

▶ task: “look at ways that reasoning and decision making are
influenced by the context in which data arises”

▶ approaches like a mathematician

▶ step 1: “write down as precise a mathematical definition as
possible of what a context is”

▶ Presentation never got past first slide with that definition

▶ Entire room spent all his time discussing that definition

▶ “That one slide justified having you on the project”
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Who decide definitions in mathematics?

▶ Cody Patterson on Facebook: “I think that in his first 100
days President Biden should issue an executive order
stipulating that 0

0
is defined to be 1, and the exponential rule

for limits (that limx→a b
x
= b

a
) only holds when b > 0”

▶ But why does this take an executive order?
▶ We could “look up the definition”

▶ leads to a dead-end, or an arbitrary choice

▶ I choose 0
0
= 1 because of combinatorics

▶ (x + y)n = ∑n
i=0 (ni )x

i
y
n−i

▶ (0 + y)n = ∑n
i=0 (ni )0

i
y
n−i

= 0
0
y
n

▶ This was a choice, to make a theorem nicer to state
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Why do we even need definitions?

▶ Brevity

▶ “the ratio of the length of the side opposite an angle with
measure x to the length of the hypotenuse of a right triangle”

▶ or sin(x)?

▶ Repetition

▶ sin x actually comes up a lot
▶ 5x

17 − 29x
2 + 42 does not come up a lot

▶ Examples

▶ e
x

▶ ln x
▶ prime number
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Addition

▶ What are some essential features of addition of real numbers?

▶ x + y is real (closed)
▶ (x + y) + z = x + (y + z) (associative)
▶ x + y = y + x (commutative)
▶ 0 + x = x + 0 = x (identity)
▶ (−x) + x = x + (−x) = 0 (inverse)

▶ (almost) everything else we need comes from these
▶ Other things satisfy these properties too

▶ Unify, clarify proofs and explanations
▶ Find other examples

▶ sets of conditions that work well together, that come up
often, become definitions

▶ But we don’t always need commutativity; remaining properties
are definition of group

▶ Example that there is some choice in which conditions to
include in a definition.
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Including ∞

▶ Just because we can make choices, not all choices are good

▶ Can we choose to include ∞ with the real numbers?

▶ ∞+ x = x +∞ =∞

▶ ∞−∞ = 0

▶ No associativity: (3 +∞) + −∞ = 0, but 3 + (∞+−∞) = 3

▶ You could just leave out associativity, but that’s much less
interesting

▶ No cancellation: ∞+ 5 =∞+ 3, but 5 ≠ 3.
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Defining exponentiation

▶ Some choices are forced

▶ Why is b
1/2

=
√
b?

▶ Start with b
n+m

= (bn) × (bm)

▶ For integers n,m
▶ For any n,m

▶ b = b
1/2+1/2

= (b1/2) × (b1/2)

▶ We also need that square root exists and is unique, by showing
x
2

is an invertible function.

▶ Define rational exponents

▶ Define real exponents with limits
▶ Negative bases cause all sorts of trouble and exceptions

▶ 3
√
−64 exists, but

√
−64 does not
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Is 1 prime?

▶ Extreme cases cause the most trouble, but still involve choices

▶ Prime: A number only divisible by 1 and itself

▶ . . . but we usually go out of our way to exclude 1. Why?

▶ Prime factorization is unique

▶ 60 = 2 × 5 × 2 × 3 = 5 × 2 × 3 × 2 =⋯

▶ 60 = 2 × 2 × 3 × 5 = 2
2 × 3 × 5

▶ 60 = 1 × 1 ×⋯× 1 × 2 × 2 × 3 × 5
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Is -7 prime?

▶ Prime: A number only divisible by 1 and itself

▶ But n satisfies this definition only if −n is

▶ Everything is also divisible by −1

▶ We call 1 and −1 units, and they are not interesting for
factorization

▶ We restrict factorization to positive integers

▶ (In polynomial factorization, all the non-zero numbers are
units)
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▶ Is the empty set ∅ a set?

▶ Is ∅ ⊆ A?

▶ Is every element of ∅ also an element of A?

▶ Does x ∈ ∅ imply x ∈ A ?

▶ False hypothesis makes implication true!
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Special cases

▶ Is a square (special case of) a rectangle?

▶ Yes, so theorems that produce rectangles don’t have to keep
saying “unless it’s a square”

▶ A circle is an ellipse
▶ An equilateral triangle is isosceles
▶ An integer is a rational number

▶ Is 5 a polynomial?

▶ Yes, so for instance the sum of two polynomials is always a
polynomial
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Matrix multiplication

▶ Why is matrix multiplication defined the way it is?

▶ To guarantee (AB)v = A(Bv), where v is a vector

▶ So the equation comes first, then the definition, not the other
way around!
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Range of inverse trig functions

▶ Trig functions are not 1-1

▶ So to define inverse trig functions, we need to restrict the
domain of the trig functions

▶ Which domain do we pick?
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Summary

▶ Definitions have to come first

▶ We can (we have to?) make choices in definitions, often to
make results nicer

▶ Sets of conditions that work well together, that come up
often, become definitions but there is some choice in which
conditions to include

▶ Just because we can make choices, not all choices are good

▶ Some choices are forced

▶ Extreme cases cause the most trouble, but still involve choices

▶ We should not hide all this from students!
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