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for analyzing modern brain-imaging play an important role in the advancement of science. Imaging

data that measure brain function are usually multivariate high-density longitudinal data and

are heterogeneous across both imaging sources and subjects, which lead to various statistical

and computational challenges. In this paper, we propose a group-based method to cluster a

collection of multivariate high-density longitudinal data via a Bayesian mixture of smoothing

splines. Our method assumes each multivariate high-density longitudinal trajectory is a mixture

of multiple components with different mixing weights. Time-independent covariates are assumed

to be associated with the mixture components and are incorporated via logistic weights of a

mixture-of-experts model. We formulate this approach under a fully Bayesian framework using

Gibbs sampling where the number of components is selected based on a deviance information

criterion. The proposed method is compared to existing methods via simulation studies and is

applied to a study on functional near-infrared spectroscopy (fNIRS), which aims to understand

infant emotional reactivity and recovery from stress. The results reveal distinct patterns of brain

activity, as well as associations between these patterns and selected covariates.

Key words: Bayesian mixture model; Brain-imaging; Functional near-infrared spectroscopy; Model-based

clustering; Time series; Smoothing splines; Face-to-face still-face

1. Introduction

Time series are realizations of random processes. Obtaining estimated trajectories may pro-

vide insights into many practical problems. Functional near-infrared spectroscopy (fNIRS) is a

noninvasive brain imaging technique that measures changes in both oxy- and deoxy-hemoglobin

using near-infrared light (Jobsis, 1977). In fNIRS, processed data are nonstationary multivariate

time series with a non-constant mean and high variability across time, which pose many statistical

challenges in inference and estimation. Different subjects could have distinct patterns of multi-
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variate longitudinal trajectories, which could be associated with certain clinical or demographic

characteristics. The analysis of fNIRS data requires an appropriate method for the analysis of a

collection of multivariate high-density longitudinal data observed from different subjects.

Cluster analysis is often used to address the issue of heterogeneity and identify subgroups from

collections of time series observed from different subjects. Time series clustering has been used

in diverse scientific areas to discover trajectory patterns, which can uncover valuable information

from complex and massive datasets (Liao, 2005). Time series and high-density longitudinal clus-

tering partitions the entire collection of data into different groups such that homogeneous time

series are grouped together based on a certain similarity measure. Several authors have proposed

clustering algorithms for multivariate time series. Kakizawa and others (1998) used Kullback-

Leibler discrimination information as the minimum discrimination criterion for clustering mul-

tivariate Gaussian time series. Wang and others (2007) used a modified K-means clustering

algorithm for clustering multivariate time series based on univariate structures. Euan and others

(2019) proposed a coherence-based time series clustering that is able to include both within and

between-cluster dependence. A variety of papers have established different model-based clustering

methods for clustering multivariate time series, such as multivariate autoregressive models (He

and others, 2022), a hidden Markov model (Li and others, 2001) and smoothing splines (Krafty

and others, 2017). A comprehensive review of methods for time series clustering can be found in

Liao (2005) and in Maharaj and others (2019).

Covariate-dependent structures can often be associated with the mixture components from a

clustering of time series. Bertolacci and others (2022) presented an analysis of multiple nonsta-

tionary time series by using a covariate-dependent infinite mixture with logistic stick-breaking

weights, where mixing weights are computed based on covariates. The mixture-of-experts model

(Jacobs and others, 1991) assigns weights to each expert via covariate-dependent multinomial log-

its. Huerta and others (2003) addressed the issue of time series model mixing based on covariates
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using the hierarchical mixture-of-experts (Jordan and Jacobs, 1994).

Smoothing splines, which are nonparametric methods that utilize roughness-based penalties,

have been widely used in the analysis of time series and longitudinal trajectories (Wang, 2011; Gu,

2013). Bayesian interpretations of smoothing splines were first discussed by Kimeldorf and Wahba

(1970). Wahba (1978) showed that the solution to the smoothing splines objective function is

equivalent to Bayesian estimation with a partially diffuse prior. Speckman and Sun (2003) adopted

a fully Bayesian approach for implementing smoothing splines with a noninformative prior on the

variance component, as well as derived necessary and sufficient conditions for the propriety of

the posterior. Smoothing splines require estimation of a large number of coefficients, which might

be impractical in high-dimensional settings. Gu and Kim (2002) used a subset of reproducing

kernel functions to achieve a low-dimensional approximation. Wood and others (2002) obtained a

subset of basis functions using the eigen-decomposition of the Gaussian kernel. Krafty and others

(2017) proposed a tensor-product model for the analysis of replicated multivariate time series

which decomposes the power spectrum into products of univariate outcomes and frequencies.

Our goal in this paper is to propose a multivariate longitudinal modeling strategy for fNIRS

data and to perform covariate-guided clustering of multivariate high-density longitudinal data

that can capture trajectory patterns of mixture components, as well as evaluate the relationship

between covariates and trajectory patterns. To this end, each mixture component is modeled via

smoothing splines, and time-independent covariates are incorporated into the mixture model via

the mixing weights. The method is formulated in a fully Bayesian framework. The rest of this

paper is organized as follows. In Section 2 we introduce the motivating study. Sections 3 and 4

present the proposed model and priors. Section 5 introduces the sampling scheme. In Section 6 we

report simulation results under different settings and Section 7 illustrates our proposed method

with application to the motivating study. Section 8 concludes the paper with a discussion.
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2. Motivating Study

Our motivating study aims to understand patterns of infants’ brain activity before, during

and after an emotionally stressful probe called face-to-face still-face (FFSF) (Tronick and others,

1978). Participant mothers in this study were recruited from the longitudinal Pittsburgh Girls

Study (PGS), a population-based study of 2,450 girls who were recruited in the city of Pittsburgh

between the ages of 5 and 8 (Keenan and others, 2010). In 2016, a large-scale sub-study of the PGS

was initiated to investigate how environmental factors, such as psychological stressors experienced

during childhood and adolescence, affect later maternal pregnancy and child health. The study

is part of the National Institutes of Health Environmental Influences of Child Health Outcomes

(ECHO) program, which examines different impacts of prenatal environmental exposures across

biological, chemical, physical and social domains on offspring health and development (Gillman

and Blaisdell, 2018). The PGS-ECHO study enrolls PGS participants as they become pregnant or

recently deliver a live birth. Participants complete multiple prenatal lab visits and the children

are followed from ages 6 to 36 months. The lab protocol includes interviews and interaction

tasks to assess contextual stressors, health, mood, lifestyle behaviors and offspring behavioral

and emotional development.

Face-to-face interactions between mothers and infants are essential to the development of in-

fants with respect to communication and social skills, as well as the regulation of emotion and

temperament (Hipwell and others, 2019). The FFSF paradigm is a widely used stress task (a

violation of the expectation of social interaction) that allows for biobehavioral measurement of

individual differences in infant response and recovery. The FFSF comprises of three phases: inter-

act (or baseline), still-face and recovery (Adamson and Frick, 2003). In phase 1, mothers perform

normal interactions with infants without the use of toys; this phase serves as the baseline. In phase

2, mothers adopt a neutral facial expression (still-face with no facial or oral communication) to

infants, followed by phase 3, where mothers resume normal interactions with their infants. Prior
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to the start of the FFSF, an fNIRS cap is fitted on the infant’s head to measure the level of and

change in brain activation across the three phases.

PGS-ECHO fNIRS still-face data are recorded using a continuous NIRS imaging system

(NIRScout; NIRx Medical Technologies, Berlin, Germany) at the sampling rate of 7.8125 Hz and

using the NIRStart acquisition software. The data are measured simultaneously at two wave-

lengths (760 nm and 850 nm). This fNIRS probe consists of 12 channels from 8 sources and 4

detectors, and a figure of the fNIRS probe configuration is given in the Supplemental material.

In the current study, we measured infant brain activity using the above fNIRS probe (roughly

120 seconds of measurements for each phase). At the end of 2021, recorded fNIRS still-face data

had been collected from 155 infant subjects. Demographic variables along with parent reports

on the Infant Behavior Questionnaire-Revised (IBQ-R) (Gartstein and Rothbart, 2003) were also

collected. By removing infants who did not complete the three phases of the still-face paradigm,

who had large outliers based on leverage, and who had a very short period of measurements in

any of the three still-face phases, there were a total of 82 subjects with complete fNIRS still-

face data available for future analysis. Data pre-processing steps were performed including data

interpolation and rescaling. Finally, processed fNIRS data had a total of 1,500 measurement points

for each subject and each channel, where each phase consisted of 500 points. All measurements

and sampling times were rescaled to be between 0 and 1, with the interact phase occurring

between time 0 to 1/3, still-face between 1/3 to 2/3, and recovery between 2/3 to 1.

Figure 1 displays trajectories of four selected channels in the prefrontal cortex for each sub-

ject. Multivariate longitudinal trajectories are referred to as fNIRS trajectories across multiple

channels. Different trajectory patterns are observed for each subject and each channel, which

demonstrates heterogeneity and the need for multivariate trajectory clustering as a function of

related variables of interest. The goals of our analysis are to identify distinct patterns of brain

activity trajectories from multiple fNIRS channels represented by the relative concentration of
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oxy-hemoglobin, and to assess the association between brain activity trajectories and relevant

covariates. In particular, our main scientific question is in understanding associations between

the subjective, parent-reported measures of child temperament in the IBQ that is commonly used

in clinical settings, and objective measures of neurological activity during a controlled laboratory

task.

3. Model

In this section, we provide a detailed description of our proposed covariate-guided Bayesian

mixture of spline experts model. The proposed model consists of spline components whose mixing

weights depend on covariates.

3.1 Mixture of splines model

We propose a tensor-product mixture of splines model for multivariate high-density longitu-

dinal data. For each subject i = 1, . . . , N , let yi = (y′
i1, . . . ,y

′
ik, . . . ,y

′
iK)′ be the nK-vector corre-

sponding to theK-dimensional trajectories for k = 1, . . . ,K, where yik =
[
yik(t1), . . . , yik(tj), . . . ,

yik(tn)
]′

contains the trajectory of measurements on the kth entry of the data evaluated over

a grid of n time points for j = 1, . . . , n, and ϵi = (ϵ′i1, . . . , ϵ
′
iK)′ is the nK-vector of errors.

Following the model representation of Krafty and others (2017), the tensor-product model for

the K-dimensional multivariate trajectories, conditional on component g, g = 1, . . . , G, can be

written as:

{yi | zig = 1} = (IK ⊗X)αg + (IK ⊗W )βg + ϵi, (3.1)

where {zig}Gg=1 are latent indicators as described in Section 3.3, αg = (α′
g1, . . . ,α

′
gK)′ is a 2K-

vector of intercepts and slopes, βg = (β′
g1, . . . ,β

′
gK)′ is a mK-vector of basis function coefficients

as described in Section 4.1, IK is a K × K identity matrix and ⊗ denotes a tensor product.
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The matrix X is given by X =

(
1 1 . . . 1
t1 t2 . . . tn

)′

and the m columns of the matrix W are

smoothing splines basis functions as described in Section 4.1. We assume the error vector ϵi follows

a MVN(0,Ψg⊗U) distribution, where U = In is the n×n identity matrix, and Ψg = diag(σ2
g) is

a K ×K diagonal matrix with the error variances σ2
g = (σ2

g1, . . . , σ
2
gK)′. We assume each subject

has a common grid of time points across all K entries, such that X and W are common to

all subjects, although our proposed method can be generalized to the case where subjects are

observed at different grids of time points. In addition, we assume no correlation across different

trajectory entries. It should be noted that, although trajectories from the same subject are

independent conditional on group, in the next subsection we assume a prior distribution for

zig, and trajectories from a subject are correlated marginal over zig.

To simplify notation, we let S = [X W ] and θg = (α′
g1,β

′
g1, . . . ,α

′
gK ,β′

gK)′. Equation (3.1)

can then be rewritten as:

{yi | zig = 1} = (IK ⊗ S)θg + ϵi. (3.2)

3.2 Model for the mixing weights

The mixture-of-experts model (Jacobs and others, 1991) is applied to form a covariate-guided

structure for our proposed model, where the mixing weights are multinomial logits that are

functions of selected covariates. As in Sun and others (2007), the mixing weights are expressed

as

πig(Vi) =
exp(V ′

i δg + ζig)∑G
h=1 exp(V

′
i δh + ζih)

, (3.3)

where Vi = (1, Vi1, · · · , ViP )
′ is a vector of length (P + 1) containing values of P covariates for

subject i, and δg = (δg0, δg1, · · · , δgP )′ is the corresponding coefficient vector. For identifiability,

we set δG = 0. Equation (3.3) differs slightly from the weights in the traditional mixture of experts

model in that it includes a random term ζig for each subject. This term accounts for unmeasured

factors beyond the observed covariates, and enhances model performance and inference of the
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mixing weights.

3.3 Augmented likelihood

To account for heterogeneity across subjects, we assume that the kth entry of the multivariate

trajectories, yik, comes from a mixture model with G components, i.e.,

yik ∼
G∑

g=1

πigfgk(yik | µgk, σ
2
gkIn), (3.4)

where fgk(yik | µgk, σ
2
gkIn) is the probability density function of the multivariate normal distribu-

tion with mean vector µgk = Xαgk+Wβgk and covariance matrix σ2
gkIn for the gth component

and the kth entry. The πig are mixing weights that depend on covariates as described in Section

3.2.

As is common in mixture models, augmenting the likelihood with latent variables indicating

the component from which a trajectory originates simplifies the computation greatly (Dempster

and others, 1977). In particular, let zig = 1 if the ith multivariate trajectory belongs to the gth

component and zig = 0, otherwise. Let y = (y1, . . . ,yN )′ be all observed multivariate trajectories

and Θgk be the aggregation of all parameters for component g and entry k. The parameter vector

for all components and all entries is then denoted by Θ = (Θ′
11, . . . ,Θ

′
GK)′. The augmented

likelihood of all N multivariate trajectories is given by

L(Θ | y, Z) =

N∏
i=1

G∏
g=1

[
πig

K∏
k=1

fgk(yik | Θgk)
]zig

, (3.5)

where fgk(yik | Θgk) is the probability density function as appeared in the (3.4). From Bayes’

rule, the distribution of the latent indicators zig is given by

p(zig = 1 | y,S,Θ, πig) =
πig

∏K
k=1 fgk(yik | Θgk)∑G

h=1 πih

∏K
k=1 fhk(yik | Θhk)

. (3.6)

4. Priors

In this section, the priors on the model parameters are introduced.
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4.1 Smoothing splines prior

The conditional expectation of a mixture component in model (3.4) is given by E(yik | zig =

1) = Xαgk + Wβgk. We place a smoothing spline prior on βgk and let Hgk = Wβgk, where

Hgk =
[
Hgk(t1), . . . ,Hgk(tn)

]′
is a zero-mean Gaussian process with variance covariance matrix

τ2gkΦ (Wahba, 1980; Wood and others, 2002), such that cov
[
Hgk(tr),Hgk(th)

]
= τ2gkϕrh, τ

2
gk is

a smoothing parameter for component g and entry k, and the (r, h)th element of Φ is given by

ϕrh = 1
2 t

2
r(th − tr

3 ) for tr ⩽ th. The matrix Φ is common to all subjects since all entries of the

multivariate trajectories are observed at common time points.

As seen above, the matrix Φ is n×n, and to avoid the computational burden for large n, a low-

rank approximation is often adopted. To facilitate this approximation, we obtain basis functions

via the spectral decomposition of Φ, as has been proposed in Wood and others (2002) and used

in Rosen and others (2009, 2012); Krafty and others (2011). In particular, the matrix W consists

of m basis functions evaluated at times t1, . . . , tn, and βgk is an m-dimensional vector of basis

function coefficients. These basis functions are obtained by applying the spectral decomposition

to Φ such that Φ = QΓQT , where Q is the matrix of eigenvectors of Φ, and Γ is a diagonal

matrix containing the eigenvalues of Φ. We then let the design matrix W = QΓ1/2 and place

a normal prior N(0, τ2gkIn) on βgk, which leads to Hgk or Wβgk ∼ N(0, τ2gkΦ) as mentioned

above.

By using the low-rank approximation, the number of columns of W is reduced from n to

m (m < n), which greatly reduces the computational burden without sacrificing the model

fit (Wahba, 1980; Wood, 2006). Eubank (1999) indicated that the eigenvalues in the diagonal

matrix Γ decay rapidly as m increases. Thus, we can achieve a good approximation by selecting

a relatively small number m of basis functions. The number of basis functions m is set to 10 in

simulation studies as described in Section 6, which has been shown (Krafty and others 2011) to

explain more than 98% of the total variability.
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We assume the prior θg ∼ N(0,Dg), where Dg = diag(σ2
α112, τ2g11m, . . . , σ2

αK12, τ2gK1m)

is the covariance matrix of θg. The vector (σ2
α1, . . . , σ

2
αK)′ contains fixed prior variances for the

regression coefficients αgk, common to all components and entries. In particular, we fix the com-

mon prior variance σ2
α = 100. The vector τ 2

g = (τ2g1, . . . , τ
2
gK)′ contains the smoothing parameters

for the gth mixture component and 1m is an m-vector of ones. We assume independence between

the regression coefficients αgk and the basis function coefficients βgk.

4.2 Priors on the smoothing parameters

We assume the smoothing parameters τ 2
g = (τ2g1, . . . , τ

2
gK)′ vary across components g and

entries k. Although the most common choice for the prior on a variance parameter is the inverse

gamma distribution, Gelman (2006) and Wand and others (2011) suggested that a half-t prior

on the standard deviation can reflect lack of information on a scale parameter. The half-t is a

family of heavy-tailed distributions and has a good shrinkage performance. It can be expressed

as a scale mixture of inverse gamma random variables using a latent variable which follows an

inverse gamma distribution (Wand and others, 2011). Thus, we assume a half-t distribution such

that τgk ∼ t+ντ
(0, Aτ ), where ντ is a degrees of freedom parameter, and Aτ is a scale parameter.

We set ντ = 3 and Aτ = 10 for all components and entries.

4.3 Priors on the error variances

We assume σgk
i.i.d∼ t+νσ

(0, Aσ) and set νσ = 3 and Aσ = 10 for all components and entries.

4.4 Priors on the logistic parameters and the variances of random intercepts

This subsection provides details on the prior distributions placed on the parameters of the

logistic weights (3.3). For ease of notation, we denote δ∗g = (δTg , ζ
T
g )

T , where ζg = (ζ1g, · · · , ζNg)
T ,

g = 1, . . . , G. We let V ∗
i = (V ′

i , e
′
i)

′ where ei is a vector of all zeros except for a single 1 in the
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ith position, and V ∗ is a matrix consisting of the rows V ∗T
i , i = 1, . . . , N . Gaussian priors are

placed on the logistic parameters, i.e., δ∗g ∼ N(0,Bg), where Bg = diag(σ2
δg1P+1, κ2

ζg1N), and

the priors on the random intercepts satisfy ζg ∼ N(0, κ2
ζgIN ). As for the hyperparameters, we

assume σ2
δg = 10 for all components and covariates, and κζg ∼ t+νκ

(0, Aκ), where νκ = 3 and

Aκ = 10 for all components.

To sample the logistic parameters, Polson and others (2013) proposed a data augmentation

scheme incorporating Pólya-Gamma latent variables, which facilitates Gibbs steps. Details on

sampling the logistic parameters are provided in the Supplementary Material.

5. Sampling scheme

This section outlines the Gibbs steps for sampling from the conditional posterior distributions

of all the model parameters. More details are given in Supplementary Material.

5.1 Gibbs sampling steps

Letting ℓ denote the current Gibbs sampling iteration, parameter values at the (ℓ + 1)th

iteration are drawn according to the following steps.

1. Draw θ
(ℓ+1)
gk from (θ

(ℓ+1)
gk | y,S, τ2(ℓ)gk , σ

2(ℓ)
gk ) ∼ N(ugk, σ

2
gkΛgk), where ugk and Λgk are

mean vectors and covariance matrices.

2. Draw σ
2(ℓ+1)
gk from (σ

2(ℓ+1)
gk | ϵ

(ℓ+1)
igk , a

(ℓ+1)
σgk ) ∼ IG

(
(nN

(ℓ)
g + νσ)/2,

∑N
i=1 zigϵ

′
igkϵigk/2 +

νσ/aσgk

)
, where N

(ℓ)
g is the current number of subjects in the gth component, ϵigk is the

error vector for the gth component, the ith subject and the kth entry, and aσgk
is a latent

variable in the IG scale mixture underlying the half-t distribution.

3. Draw τ
2(ℓ+1)
gk from (τ

2(ℓ+1)
gk | β(ℓ+1)

gk , a
(ℓ+1)
τgk ) ∼ IG

(
(ντ +m)/2,β′

gkβgk/2 + ντ/aτgk

)
, where

aτgk is a latent variable as in 2.
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4. Draw δ
∗(ℓ+1)
g from (δ

∗(ℓ+1)
g | V ∗, z

(ℓ)
ig , ω

(ℓ+1)
ig , κ

2(ℓ)
ζg ) ∼ N(Mg,Σg), where ω

(ℓ+1)
ig is a Pólya-

Gamma latent variable in the augmentation described in Section 4.4.

5. Draw κ
2(ℓ+1)
ζg from (κ

2(ℓ+1)
ζg | ζ(ℓ+1)

g , a
(ℓ+1)
κg ) ∼ IG

(
νκ/2, ζ

′
gζg/2+ (νκ+N)/aκg

)
, where aκg

is a latent variable as in 2 and 3.

6. The mixing weights π
(ℓ+1)
ig are obtained by computing p(π

(ℓ+1)
ig | V ∗, δ

∗(ℓ+1)
g , z

(ℓ)
ig ) from

Equation (3.3).

7. Draw z
(ℓ+1)
ig ∼ p(z

(ℓ+1)
ig = 1 | y,S,θ(ℓ+1)

gk , σ
2(ℓ+1)
gk , π

(ℓ+1)
ig ) according to Equation (3.6).

5.2 Selecting the number of components

Spiegelhalter and others (2002) suggested the use of the deviance information criterion (DIC)

for model selection based on the effective number of parameters. Gelman and others (2003)

introduced an alternative measure of effective number of parameters based on the variance of

the log predictive density across MCMC iterations. This measure is robust and more accurate

than the original one. Moreover, it has the advantages of always being positive and invariant to

reparameterizations (Gelman and others, 2003).

In this paper, we use DIC to select the number of components for our proposed mixture

model.

6. Simulation studies

To demonstrate the performance of the proposed method, we conduct simulation studies by

generating data sets from the proposed model under two scenarios: two-component mixture (G =

2) of trivariate trajectories (K = 3) and four-component mixture (G = 4) of bivariate trajectories

(K = 2). We simulate 100 replicates in each simulation setting with N = 150 trajectories of

length n = 50. A total of 20, 000 Gibbs sampling iterations are run with a burn-in of 4, 000. In
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all simulation settings, the hyperparameters are assigned the same values, given in Section 4.

6.1 Two-component trivariate model

In this scenario, we consider the two-component trivariate model. From Equation (3.1), the

gth component of the proposed mixture model is given by

{yi(tj) | zig = 1} = α0g +α1gtj +

m∑
q=1

wq(tj)βgq + ϵigtj , j = 1, . . . , n, g = 1, . . . , G, (6.7)

where yi(tj) is the trivariate trajectories of subject i evaluated at time tj , α01 = (1,−3,−2)′,

α02 = (5, 4, 3)′ and α11 = (−2, 2, 0.5)′, α12 = (1,−1,−0.5)′ are independent intercepts and

slopes for each component, respectively. The vector βgq consists of the qth spline coefficients of

all variates for component g, and wq(tj) is the qth spline basis function evaluated at time tj . The

ϵigtj are independent zero-mean error terms, distributed as ϵigtj ∼ MVN
(
0,diag(σ2

g1, σ
2
g2, σ

2
g3)

)
,

where σ2
1 = (σ2

11, σ
2
12, σ

2
13)

′ = (3, 5, 4.5)′ and σ2
2 = (σ2

21, σ
2
22, σ

2
23)

′ = (4, 3.5, 4)′. The smoothing

parameters are set to τ21 = (τ211, τ
2
12, τ

2
13)

′ = (3.5, 5, 8.5)′ and τ22 = (τ221, τ
2
22, τ

2
23)

′ = (6, 2.5, 1.5)′.

We investigate the performance of the trajectory and logistic parameter (see Equation (3.3))

estimates. For the former, we calculate the averaged root square error (ARSE) of each mixture

component g

ARSEg =

√√√√ 1

nK

n∑
j=1

K∑
k=1

[
µgk(tj)− µ̂gk(tj)

]2
,

where µgk(tj) is the expectation of yik(tj) according to the gth component, and yik(tj) is the

kth entry of the trajectories evaluated at time tj for subject i. The µ̂gk(tj) are the estimated

posterior means of µgk(tj) for k = 1, . . . ,K and j = 1, . . . , n.

To handle a potential label switching across mixture components, we compute ARSEg as

the minimum value across all components, by using the estimate of the gth component and the

truth of each group, g = 1, . . . , G. After obtaining correct component labels by evaluating ARSE,

we also report the averaged bias (A-bias) and the variance of the bias (V-bias) of each mixture
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component g, where

A-biasg =
1

nK

n∑
j=1

K∑
k=1

[
µ̂gk(tj)− µgk(tj)

]
,

and V-biasg is computed by calculating the sample variance of the bias over entries and time

points.

For each replicate, trajectories are estimated by three methods: the proposed method, the R

package gbmt (Magrini, 2022) and the TRAJ procedure in SAS (Nagin and others, 2018). Boxplots

of ARSE, A-bias and V-bias of each component are given in the first row of Figure 2. Notably,

TRAJ is able to fit a regression spline model by treating basis functions as time-varying covariates,

while gbmt is only able to fit a cubic model. Our proposed method fits a penalized spline model

under the Bayesian framework and is able to outperform both gbmt and TRAJ in terms of ARSE

and V-bias for both components. A-biases are close to zero and comparable for all three methods.

These findings demonstrate that all three methods are able to achieve a reasonable fit to group-

based trajectories since bias over the entire trajectories is close to zero. Our proposed method is

able to obtain more precise estimates of trajectories as is evident from the smaller V-biases.

To evaluate the performances of the logistic parameters, we compute the root mean squared

error (RMSE) for each logistic parameter using the proposed method and TRAJ. Notably, gbmt

is not able to incorporate covariates into the computation of mixing weights. Results of RMSEs

of each logistic parameter are given in Table 1. We also compare RMSEs between the proposed

method and TRAJ under four settings of different combinations of N = 150, 250 and n = 50, 70.

Our proposed method yields smaller RMSEs of the logistic parameters in all cases, especially for

the intercept δ0 and the first covariate δ1. This is to be expected since TRAJ uses a multinomial

logistic model, which may result in inflated parameter estimates in cases of unbalanced outcomes

or perfect separation, while our proposed method is able to obtain a shrinkage result using the

penalization method.
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6.2 Four-component bivariate model

In this scenario, we consider the four-component bivariate model whose gth component is given

in Equation (6.7), where the values of the intercepts and slopes are α01 = (1,−2)′, α02 = (5, 3)′,

α03 = (−3, 5.5)′, α04 = (4,−1)′, α11 = (−3, 0)′, α12 = (2,−3.5)′, α13 = (2.5, 2)′ and α14 =

(−3, 1.5)′. By analogy to the two-component trivariate model, the errors ϵigtj are independent

zero-mean bivariate Gaussian random variables, distributed as ϵigtj ∼ MVN
(
0,diag(σ2

g1, σ
2
g2)

)
,

where σ2
1 = (σ2

11, σ
2
12)

′ = (6, 9)′, σ2
2 = (σ2

21, σ
2
22)

′ = (8, 7.5)′, σ2
3 = (σ2

31, σ
2
32)

′ = (10, 6.5)′ and

σ2
4 = (σ2

41, σ
2
42)

′ = (7, 8.5)′.

The performances of the estimated trajectories and logistic parameters for this scenario are

displayed in the second row of Figure 2 and Table 1. As in the first scenario, our proposed method

outperforms both gbmt and TRAJ in terms of ARSE and V-bias for all components. Notably, TRAJ

fails to yield precise estimates in several replicates and thus results in larger mean ARSE and

V-bias. In terms of the logistic parameters, the proposed method performs well with smaller

RMSEs in almost all cases, especially for δ0 and δ1. More simulation results based on different

values of N and n under the two scenarios considered above, as well as a simulation of a two-

component four-variate model closely matching our real data dimension and component settings,

are presented in the Supplementary Material.

7. Real data application

We apply our proposed method to the analysis of the fNIRS still-face study introduced in Sec-

tion 2. Six covariates are considered in our covariate-guided model: Infant Behavior Questionnaire-

Revised negative emotionality (IBQ-NE) score, Infant Behavior Questionnaire-Revised effortful

control (IBQ-EC) score, gestational age (in Days), infant age (in Months), head circumference

(in cm) and sex. All continuous covariates are centered and scaled. We set the number of basis

functions at m = 20 and run a total of 30, 000 Gibbs iterations with a burn-in period of 6, 000.
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The values of the hyperparameters are the same as the ones used in the simulation studies.

The IBQ-NE construct combines data from the following subscales: Sadness, Distress to Limi-

tations, Fear, and Falling Reactivity/Rate of Recovery from Distress. IBQ-EC refers to the ability

to inhibit a dominant response to perform a subdominant one and has been shown to be protec-

tive against a myriad of difficulties (Gartstein and others, 2013). Finally, the data consist of 79

subjects with complete fNIRS and covariate values. We present results based on analyzing one

set of four-channels in the prefrontal cortex, which plays important roles in regulating behavior

and emotions. Additional results based on analyzing another set of four channels and all channels

are given in the Supplementary Material. The four channels are S1D1, S2D2, S5D3 and S6D4 as

selected in Figure 1. We fit our proposed model with the number of components varying from 2

to 6. Based on values of DIC introduced in Section 5.2, the two-component model is selected as

the best model for this four-channel analysis.

Figure 3 presents the estimated trajectories of the two-component model fitted to the four

channels. We are interested in brain activity signals in the still-face period while the interact

period is used as the reference level. For component 1, a decreasing trajectory is observed for the

still-face period in all four channels. In contrast, an increasing trend is observed for the still-face

period in all four channels for component 2. Trajectories from the two-component model show

consistency of brain activity levels across different brain functional areas and demonstrate the

heterogeneity of brain activity patterns in the population. After fitting the mixture model and

finding the above trajectory patterns, we define component 1 as the no-response component and

component 2 as the response component based on trajectory patterns in the still-face period.

Figure 4 displays the logistic parameter estimates for all covariates in the 2-component model,

where component 2 is used as the reference. There is evidence that IBQ-NE scores differ between

the two components. A positive coefficient of IBQ-NE indicates that a higher IBQ-NE score

is associated with decreased brain activity in the still-face period for all four channels. Infants
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who are highly susceptible to sadness and fear tend to be less responsive to the violation of

the expectation of social interaction. The negative posterior mean estimate of the IBQ-EC score

indicates that a high IBQ-EC is associated with an increased brain activity. Infants who are

resilient to difficulties tend to be more responsive when the expectation of social interaction is

not met. The above conclusions are consistent with findings in Gartstein and others (2013) that

IBQ-NE is negatively associated with IBQ-EC. Enlow and others (2016) reported a negative

association between activity level and IBQ-NE among infants whose families encourage a high

level of activities. Furthermore, a negative posterior mean of the logistic coefficient of infant age

suggests that age could play an important role where younger infants tend to be less responsive

to the FFSF paradigm.

8. Discussion

The proposed covariate-guided Bayesian mixture of spline experts model aims to perform a

model-based clustering of multivariate high-density longitudinal data from multiple subjects. Our

proposed method is compared to two commonly used methods through simulation studies which

demonstrate a better performance of our method under different scenarios. We apply our proposed

method to a fNIRS still-face study and find distinct patterns of components of longitudinal

trajectories, as well as an association between IBQ-NE score and a pattern of decreased brain

activity in the still-face period. To the best of our knowledge, this is the first still-face study using

fNIRS whose purpose is to identify trajectory components.

Our proposed method provides posterior estimates through a Gibbs sampling algorithm. Trace

plots for the various parameters indicate convergence of the algorithm with good mixing. Exam-

ples of trace plots of the logistic parameters for the four-channel analysis presented in Section 7

are given in the Supplemental Material. As for model performance, the Widely Applicable Infor-

mation Criterion (WAIC) is commonly used as a metric to compare Bayesian model performance
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(Watanabe and Opper, 2010). We compute both DIC and WAIC for the two simulation studies

in Section 6.1 as well as 6.2 for selecting the number of mixture components. Consistent results

are achieved from DIC and WAIC for both simulations as shown in the Supplemental Material.

In addition, interpolation is performed in the pre-processing step of the fNIRS data. Though this

signal interpolation has very little impact on our trajectory analysis, it does have significant im-

pact on analyses that focus on autocorrelation and spectral structure. Thus, interpolation must

be used with caution, especially if being used in other setting where one desires an analysis to

conduct inference on second order properties.

Our proposed method has several limitations. First, as in any mixture models, label switch-

ing may occur, especially in the real-data application. We have adopted the Equivalence Classes

Representatives (ECR) algorithm proposed by Papastamoulis and Iliopoulos (2010) to make the

components interpretable, but other methods may be considered. Second, although trajectory

entries from the same subject are corrolated marginal over group, they are independent condi-

tional on group so that spatial dependence among different fNIRS channels is not modeled within

group. An extension to a multivariate functional ANOVA model (Zhang and others, 2023) or a

multivariate functional model with a pre-specified spatial correlation structure (Baladandayutha-

pani and others, 2008) would be possible by considering spatial correlations among trajectory

entries. Thirdly, large logistic parameter uncertainties, indicated by wide 95 % credible intervals,

are observed in the real data analysis. Future studies with larger sample sizes and more covari-

ates are needed to confirm our findings and reduce any unmeasured uncertainties in predicting

the mixing weights. Lastly, our proposed method uses DIC to select the number of components

which might be sub-optimal. Bayesian model averaging and reversible jump MCMC (RJMCMC)

methods could be considered, but trans-dimensional sampling methods would pose challenges in

providing interpretable components.
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9. Software

Software in the form of R codes, along with an example dataset, is available at https:

//github.com/HaoyiFu1993/CBMOSE.

Supplementary Material

Supplementary material will be available online at http://biostatistics.oxfordjournals.

org.
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Fig. 1: Processed fNIRS trajectories of four selected channels for each subject.
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Fig. 2: Boxplots of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of the bias (V-bias) of the estimated trajectories for each component from 100 replicates
of 150 two-component trivariate trajectories of length 50 (first row) and from 100 replicates of
150 four-component bivariate trajectories of length 50 (second row). The proposed method was
compared to R package gbmt and TRAJ procedure in SAS. The diamond markers denote the mean
statistics of each method and component. All boxplots are zoomed in for better visualization.



28 REFERENCES

Fig. 3: Estimated trajectories of the two-component model with four selected channels. I: Interact
S: Still-face R: Recovery. Red curves are posterior mean and two green dashed curves are 95%
pointwise credible intervals.
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Fig. 4: Logistic coefficient estimates and 95% credible intervals for each covariate of the two-
component model.
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Table 1. Root mean square errors (RMSEs) of each logistic parameter for the two-component
trivariate model from 100 replicates of N two-component trivariate trajectories of length n, and
the four-component trivariate model with N = 150 and n = 50. RMSEs of the proposed method
were compared to TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second
and third logistic parameters, respectively. For the two-component trivariate model, the second
component is used as the reference component. The true values of the logistic parameters are
5,−3.5, 1, 0.1, respectively. For the four-component bivariate model, the fourth component is used
as the reference component. The true values of the logistic parameters are 5,−3.5, 1, 0.1 (first
component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third component). C1, C2, C3

and C4 denote first, second, third and fourth component, respectively.

True model n N Method Comparison δ0 δ1 δ2 δ3

Two-component, trivariate

50 150
Proposed C1 vs C2 0.89 0.52 0.29 0.32
TRAJ C1 vs C2 1.57 0.87 0.36 0.34

70 150
Proposed C1 vs C2 0.86 0.50 0.29 0.31
TRAJ C1 vs C2 1.55 0.86 0.36 0.34

50 250
Proposed C1 vs C2 0.77 0.40 0.22 0.23
TRAJ C1 vs C2 0.96 0.50 0.23 0.24

70 250
Proposed C1 vs C2 0.77 0.41 0.22 0.23
TRAJ C1 vs C2 0.97 0.51 0.24 0.24

Four-component, bivariate 50 150

Proposed
C1 vs C4 0.81 0.53 0.30 0.39
C2 vs C4 1.11 0.46 0.42 0.36
C3 vs C4 0.89 0.42 0.28 0.34

TRAJ
C1 vs C4 1.20 0.74 0.35 0.41
C2 vs C4 3.81 2.27 1.33 0.49
C3 vs C4 2.07 1.33 0.76 0.32
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