Math 4329, Test I

Name _____

- 1. a. If $f(x) = x^5 + 2x^2$, find the Taylor polynomial $T_3(x)$ of degree 3 which matches f, f', f'' and f''' at a = 1.
 - b. Use the Taylor remainder formula to get a reasonable bound on the error $|f(x) T_3(x)|$ in the interval $-0.5 \le x \le 1.5$.
- 2. Write the quadratic formula root $[-b+\sqrt{b^2-4ac}]/(2a)$ in a form so that there are no serious problems with roundoff error, when b is positive and very large compared to ac.

3. Write out (and simplify) a *secant* method iteration, used to find \sqrt{b} , which does only basic arithmetic (add, subtract, multiply and divide, no square roots).

- 4. If Newton's method is used to find a root of $f(x) \equiv (x-3)^7 = 0$,
 - a. Will Newton's method converge for x_0 close to the root r = 3? Explain.
 - b. What is the order of convergence, if it converges?
 - c. Will Newton's method converge for all x_0 ? Explain.
- 5. A certain computer stores floating point numbers in a 32-bit word, which includes 1 sign bit, 9 bits for the exponent, and 22 bits for the mantissa. *Approximately*
 - a. What is the underflow limit (smallest positive number)?
 - b. What is the overflow limit (largest positive number)?
 - c. What is the machine precision (smallest positive number such that $1 + \epsilon > 1$)?
- 6. If the fixed point iteration $x_{n+1} = x_n + cf(x_n)$ is used near a root r of f(x) = 0, how should the constant c be chosen in order to ensure the fastest convergence?