Math 4329, Test I

Name _____

- 1. a. If $f(x) = 2x^4 + x^3$, find the Taylor polynomial $T_3(x)$ of degree 3 which matches f, f', f'' and f''' at a = 1.
 - b. Use the Taylor remainder formula to get a reasonable bound on the error $|f(x) T_3(x)|$ in the interval $-1 \le x \le 3$.
- 2. Write the quadratic formula root $[-b+\sqrt{b^2-4ac}]/(2a)$ in a form so that there are no serious problems with roundoff error, when b is positive and very large compared to ac.

3. If Newton's method is used to find a root of $f(x) \equiv (x-3)^5 = 0$, for what range of starting values x_0 will we get convergence to the root r = 3? What is the order of convergence of Newton's method in this case?

4. If a = -10, b = 10 and f(a) and f(b) have opposite signs, about how many bisection iterations are required to find a root between a and b to an accuracy of 10^{-10} ?

5. Compute the experimental order of convergence for a root finder with errors in 3 consecutive iterations of 10^{-4} , 10^{-7} and 10^{-14} .

6. The fixed point iteration $x_{n+1} = x_n + \sin(x_n)$ has roots at $r = n\pi$ for any integer n. For which of these roots (which values of n) will the interation converge? What will be the order of convergence for these roots?