Math 4329, Test I

Name _____

- 1. a. If $f(x) = e^{2x}$, find the Taylor polynomial $T_n(x)$ of degree n which matches $f, f', f'' \dots f^{(n)}$ at a = 0.
 - b. Use the Taylor remainder formula to get a reasonable bound (in terms of n) on the error $|f(x) T_n(x)|$ at x = 3.
- 2. Computer A stores floating point numbers in a 96-bit word, which includes 1 sign bit, 11 bits for the exponent, and 84 bits for the mantissa. Computer B stores floating point numbers in a 96-bit word, with 1 sign bit, 25 bits for the exponent, and 70 bits for the mantissa.
 - a. Which computer can handle larger numbers?
 - b. Which computer has higher accuracy? Approximately how many significant **decimal** digits of accuracy does this computer have?

- 3. A root-finder produces approximations $x_3 = 5.01, x_4 = 5.0001, x_5 = 5.000\ 000\ 06$ where one root is r = 5? Estimate the experimental order of convergence. What method have we studied that has approximately this order?
- 4. Write $\frac{\sqrt{4+x}-2}{x}$ in a form where there is no serious problem with roundoff, when $x \approx 0$.
- 5. a. Newton's method is sometimes used to find $\frac{1}{b}$ by computing the root of $f(x) = b \frac{1}{x}$. Write the Newton iteration in a form where no divisions are required (thus we can find $\frac{1}{b}$ without doing any divisions).
 - b. Same as (5a) but use the secant method.
- 6. The polynomial $x^3 x^2 x 1$ has one real root, at x = 1.839. We can write $x^3 x^2 x 1 = 0$ in the form $x^3 = x^2 + x + 1$, or $x = 1 + \frac{1}{x} + \frac{1}{x^2}$ and try the iteration $x_{n+1} = 1 + \frac{1}{x_n} + \frac{1}{x_n^2}$. Will this converge, for x_0 near 1.839? Justify your answer without actually doing any iterations.