Math 4329, Test I

Name _____

- 1. a. If $f(x) = e^{x/2}$ use the Taylor remainder formula to get a reasonable bound on the error $|f(x) T_n(x)|$ for $-2 \le x \le 2$, where $T_n(x)$ is the Taylor polynomial of degree n for f(x), at a = 0.
 - b. Approximately how large does n need to be so that this error bound is less than 10^{-10} ?

- 2. A certain computer stores floating point numbers in a 128-bit word, which includes 1 sign bit, 17 bits for the exponent, and 110 bits for the mantissa (significand). Assuming a normalized binary form is used $(1.xxxxx..._2 * 2^e)$ approximately what are:
 - a. the overflow limit (largest positive number)
 - b. the machine precision (smallest $\epsilon > 0$ such that $1 + \epsilon > 1$)

- 3. Consider that fixed-point iteration $x_{n+1} = 2.5x_n(1 x_n)$.
 - a. What are the two roots (points r such that if $x_n = r$, x_{n+1} will still equal r)?
 - b. Analyze each root to determine if the iteration will converge (and if so, with what order) when you start close to that root.

- 4. Estimate the experimental order of convergence for a root finder with errors in 3 consecutive iterations of 10^{-5} , 10^{-7} and 10^{-14} .
- 5. The root of $f(x) \equiv \frac{1}{x} b = 0$ is $x = \frac{1}{b}$.
 - a. Write Newton's iteration for solving f(x) = 0 in a form so that no divisions are required; thus providing a way to find $\frac{1}{b}$ without doing any divisions.
 - b. Same problem, but use the secant iteration.