Math 4329, Test I

Name _____

- 1. a. If $f(x) = x^3 + 2x$, find the Taylor polynomial $T_2(x)$ of degree 2 which matches f, f' and f'' at a = 2.
 - b. Use the Taylor remainder formula to get a reasonable bound on the error $|f(x) T_2(x)|$ in the interval $0 \le x \le 4$.
- 2. Computer A stores floating point numbers in a 128-bit word, which includes 1 sign bit, 31 bits for the exponent, and 96 bits for the mantissa. Computer B stores floating point numbers in a 128-bit word, with 1 sign bit, 13 bits for the exponent, and 114 bits for the mantissa.
 - a. Which computer can handle larger numbers? Approximately what is the overflow limit for this computer?
 - b. Which computer has higher accuracy? Approximately how many significant **decimal** digits of accuracy does this computer have?

3. If the fixed point iteration $x_{n+1} = x_n + cf(x_n)$ is used near a root r of f(x) = 0, how should the constant c be chosen in order to ensure the fastest convergence?

4. If Newton's method is used to find a root of $f(x) \equiv (x-3)^4 = 0$, for what values of x_0 is convergence to the root r = 3 guaranteed? Hint: Newton's method can be written in the form $x_{n+1} = g(x_n)$, what is g(x)?

5. If a = -1000, b = 1000 and f(a) and f(b) have opposite signs, how many bisection iterations are required to find a root between a and b to an accuracy of 10^{-12} ?

6. A root-finder produces approximations $x_3 = 6.01, x_4 = 6.0001, x_5 = 6.000\ 000\ 06$ when applied to $f(x) \equiv x^2 - 36 = 0$. Estimate the experimental order of convergence. What method have we studied that has approximately this order?

- 7. Consider that fixed-point iteration $x_{n+1} = 2x_n(1 x_n)$.
 - a. What are the two roots (points r such that if $x_n = r$, x_{n+1} will still equal r)?
 - b. Analyze each root to determine if the iteration will converge (and if so, with what order) when you start close to that root.