Math 4329, Test II

Name _____

1. If $P_2(x)$ is the second degree polynomial that interpolates to $f(x) = \frac{6}{1+x}$ at x = 0, 0.1, 0.2, find a reasonable bound on the error at x = 0.15.

2. Find A, B, C such that the approximation $u'(t) \approx \frac{Au(t)+Bu(t-h)+Cu(t-2h)}{h}$ is as high order as possible.

3. Find A, r which make the approximation

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Af(r)$$

as high degree of precision as possible (thus as high order as possible).

- 4. True or False:
 - a. The experimental order of convergence is $O(h^3)$ if a quadrature rule yields errors of 0.0032 when h = 0.1 and 0.0002 when h = 0.05.
 - b. The Gauss-Seidel iterative method (for Ax = b) is generally slower than the Jacobi method.
 - c. The Jacobi iterative method (for Ax = b) converges only if the matrix is diagonal-dominant.
 - d. Roundoff error is much more serious, in general, for derivative approximations than for integral approximations.
 - e. Gaussian elimination, when applied to a general N by N linear system, requires $O(N^3)$ arithmetic operations.
 - f. If s(x) is a cubic spline, then s, s', s'' and s''' must be continuous everywhere.
 - g. If a quadrature method is exact for all polynomials of degree n, its global error is $O(h^n)$ for general smooth functions.
 - h. If a matrix A has condition number 10, we expect to lose about 10 significant digits in solving Ax = b with Gauss elimination and partial pivoting.
- 5. a. Write out the Jacobi iteration, for the system

4	3	-1	x		7]
1	4	-1	y	=	9	
$\lfloor -1$	2	7	$\begin{bmatrix} z \end{bmatrix}$		$\begin{bmatrix} 7\\9\\-8\end{bmatrix}$	

Will it converge? Explain.

b. Write out the Gauss-Seidel iteration, for this system