Math 4329, Final

Name _____

1. Use the power method to find the largest (in absolute value) eigenvalue of

Γ	1	1	0	
	1	8	1	
L	0	1	1	

Start with (1, 5, 1) and do 3 iterations. What is the corresponding eigenvector?

2. a. If $p_4(x)$ is the fourth degree Lagrange polynomial which satisfies $p_4(x_i) = f(x_i), i = 0, 1, 2, 3, 4$, give a formula for the error $f(x) - p_4(x)$ at an arbitrary point x.

b. If $T_4(x)$ is the fourth degree Taylor polynomial which satisfies $T_4(a) = f(a), T'_4(a) = f'(a), T''_4(a) = f''(a), T''_4(a) = f''(a), T_4^{iv}(a) = f^{iv}(a)$, give a formula for the error $f(x) - T_4(x)$ at an arbitrary point x.

3. If the second order Taylor series method (one more term than Euler's method) is used to solve $u' = -tu^3$, write u_{n+1} in terms of h, t_n and u_n . $(t_n = nh, u_n \approx u(t_n))$

4. Do **one** iteration of Newton's method, starting from (0, 0), to solve:

 $f(x, y) = \sqrt{x+1} + xy + 3 = 0$ $g(x, y) = \sin(x+2y) - \ln(1+x) = 0$

5. How should A, r be chosen to make the approximation:

$$\int_{-1}^{1} f(x)dx \approx Af(-r) + Af(0) + Af(r)$$

as high degree of precision as possible? What is the degree of precision then?

6. Consider the linear system:

7	2	1	$\begin{bmatrix} x \end{bmatrix}$		[5]
0	3	2	y	=	4
1	-3	5	$\begin{bmatrix} z \end{bmatrix}$		$\begin{bmatrix} 5\\4\\-3 \end{bmatrix}$

- a. Write out the equations for the Jacobi iterative method for solving this system (don't actually do any iterations).
- b. Write out the equations for the Gauss-Seidel iterative method for solving this system.
- c. True or False: the Jacobi iterative method (6a) will converge for any starting vector (x_0, y_0, z_0) . Give a reason for your answer.
- d. Given that

$$A^{-1} = \begin{bmatrix} 0.1419 & -0.0878 & 0.0068 \\ 0.0135 & 0.2297 & -0.0946 \\ -0.0203 & 0.1554 & 0.1419 \end{bmatrix}$$

find the condition number of A (using L_{∞} norm). If you were to solve the linear system above using Gaussian elimination with partial pivoting, would you expect serious roundoff errors?

7. Will the iteration $x_{n+1} = \frac{3}{4}x_n + 1/x_n^3$ converge when x_0 is sufficiently close to the root $r = \sqrt{2}$? (Justify your answer theoretically, without actually iterating the formula.) If it converges, give the order of convergence.

8. a. Write the second order differential equation u'' - 5u' - u = sin(t) as a system of two first order equations, that is, in the form:

u' = f(t, u, v) =v' = g(t, u, v) =

b. Now write out the formulas for u_{n+1}, v_{n+1} for Euler's method applied to this system of first order equations:

$$u_{n+1} = v_{n+1} =$$

- 9. a. A root finder gives consecutive errors of $e_8 = 10^{-3}, e_9 = 10^{-5}, e_{10} = 10^{-12}$. Estimate the order of the method.
 - b. A quadrature method gives an error of 10^{-5} when $h = 10^{-2}$ and 10^{-13} when $h = 10^{-4}$. Estimate the order of the method.
 - c. A differential equation solver gives an answer u(1) = 0.88888 when h = 0.1, and u(1) = 0.80666 when h = 0.01, and u(1) = 0.80600 when h = 0.001. Estimate the order of the method.