Math 5329, Test I

Name _____

1. a. Find $T_n(x)$, the Taylor series of degree n for the function f(x) = ln(1+x), expanded around c = 0. (Hint: $f^{(n)}(x) = (-1)^{n-1}(n-1)!/(1+x)^n$, for $n \ge 1$.)

- b. Find $E_n(x)$, the error in $T_n(x)$, and find a reasonable upper bound on $E_n(1)$.
- c. Estimate the number of terms *n* required for $T_n(x)$ to approximate f(1) = ln(2) to 5 decimal places accuracy.
- d. Would you expect roundoff error to be a serious concern in (c)? Why or why not? (Hint: $1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n \approx ln(n)$, for large n.)

- 2. Estimate the order of convergence of a root-finder that has consecutive errors 0.2, 0.08, 0.00512.
- 3. If Newton's method is used to find a root of $f(x) = x^2 R$, find bounds on x_0 for which convergence to the root \sqrt{R} is guaranteed. (Hint: for Newton's method, $e_{n+1} = \frac{1}{2} [f''(\psi_n)/f'(x_n)] e_n^2$, where ψ_n is between x_n and the root.)

4. The golden search method tries to minimize f(x), where f is assumed to be unimodal in $a \le x \le b$, by evaluating f at two points between a and b, p = a + (1 - r) * (b - a) and q = a + r * (b - a), where r = 0.618... If f(q) is larger than f(p), the minimum is known to be in the new interval [a, q], otherwise the minimum is known to be in [p, b]. Why? Would this algorithm still work if we used r = 0.75? What is the advantage of using r = 0.618...? 5. Write out the equations used to solve the following system using Newton's method:

 $f(x,y) = 1 + x^2 - y^2 + e^x \cos(y) = 0$ $g(x,y) = 2xy + e^x \sin(y) = 0$

6. To solve $x^2 - 3x - 4 = 0$ we could write $x^2 = 3x + 4$, then x = 3 + 4/x, and iterate with this last formula: $x_{n+1} = 3 + 4/x_n$. Determine (without actually iterating) if this iteration will converge if we start near the root r = 4. What if we start near the root r = -1?