
Math 5330, Test II

Name ___________________________

1. Given that the QR decomposition of A is
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, R =
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use this to find x which minimizes ‖Ax−b‖2, where b = (
√
3,−

√
3,
√
3).

2. Prove that if z is a solution to AAT z = b, then x ≡ AT z is a solution
of Ax = b of minimum norm.

3. Find all eigenvalues of the pseudo-triangular matrix
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4. If the Jacobi iteration An+1 = QT

n
AnQn, where A1 = A converges

to diagonal form in, say, 5 iterations, so that A6 ≈ D, what are the
eigenvalues of A, and what are the eigenvectors?

5. If

A =




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2 12 −5
12 1 7
−5 7 1







a. Find an orthogonal matrix Q such that QAQ−1 is upper Hessen-
berg.

b. Find an elementary matrix M such that MAM−1 is upper Hes-
senberg.
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6. Do one complete iteration of the LR method, starting with

A =


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7. Use the power method to find the largest (in absolute value) eigenvalue
of
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Start with (1, 5, 1) and do 3 iterations. What is the corresponding
eigenvector?
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